module Homotopy.Space.Sphere.Properties where

Properties of higher spheres🔗

We can put together what we know about of a suspension and about the fundamental group of the circle to show that

opaque
  π₂S²≅ℤ : πₙ₊₁ 1 (Sⁿ 2) Groups.≅ 
  π₂S²≅ℤ = π₁S¹≅ℤ
    Groups.∘Iso (π₂ΣG≅ΩG S¹-concrete HSpace-S¹)
    Groups.∘Iso πₙ₊₁-ap 1 (Susp-ap SuspS⁰≃S¹ , refl)

The inverse to this equivalence, turning integers into 2-loops on the sphere, is constructed purely abstractly and thus too horrible to compute with. However, the forward map, giving the winding numbers of 2-loops, is more tractable. We can write down an explicit generator for and assert that the equivalence above takes it to the number by computation.

private opaque
  unfolding conj conj-refl conj-of-refl π₂S²≅ℤ

  gen : Path (Path  Sⁿ 2  north north) refl refl
  gen i j = hcomp ( i   j) λ where
    k (k = i0)  merid (suspend (Sⁿ 0) south (~ j)) i
    k (i = i0)  north
    k (i = i1)  merid north (~ k)
    k (j = i0)  merid north (~ k  i)
    k (j = i1)  merid north (~ k  i)

  π₂S²≅ℤ-computes : Groups.to π₂S²≅ℤ · inc gen  1
  π₂S²≅ℤ-computes = refl

Stability for spheres🔗

The Freudenthal suspension theorem implies that, if the of agrees with that of

Sⁿ-stability-worker
  :  n k (p : suc k  (suc n + suc n))
   n-Tr∙ (Sⁿ (1 + n)) (suc k) ≃∙ n-Tr∙ (Ωⁿ 1 (Sⁿ (2 + n))) (suc k)
Sⁿ-stability-worker n k p =
  n-Tr∙ (Sⁿ (1 + n)) (suc k)
    ≃∙˘⟨ n-Tr-Tr (≤-peel p) , refl ≃∙˘
  n-Tr∙ (n-Tr∙ (Sⁿ (1 + n)) (suc n + suc n)) (suc k)
    ≃∙⟨ (let e , p = freudenthal-equivalence {A∙ = Sⁿ (suc n)} n (Sⁿ⁻¹-is-connected (2 + n)) in n-Tr-ap {n = k} e , ap n-Tr.inc p) ≃∙
  n-Tr∙ (n-Tr∙ (Ωⁿ 1 (Σ¹ (Sⁿ (1 + n)))) (suc n + suc n)) (suc k)
    ≃∙⟨⟩
  n-Tr∙ (n-Tr∙ (Ωⁿ 1 (Sⁿ (2 + n))) (suc n + suc n)) (suc k)
    ≃∙⟨ n-Tr-Tr (≤-peel p) , refl ≃∙
  n-Tr∙ (Ωⁿ 1 (Sⁿ (2 + n))) (suc k)
    ≃∙∎

As a corollary,

πₙSⁿ≃Int :  n   πₙ₊₁ n (Sⁿ (suc n))     
πₙSⁿ≃Int 0 =
    Ω¹ (Sⁿ 1)  ∥₀      ≃⟨ ∥-∥₀-ap (Ωⁿ-ap 1 (SuspS⁰≃S¹ , refl) .fst) 
    Ω¹ ( , base)  ∥₀ ≃⟨ Equiv.inverse (_ , ∥-∥₀-idempotent (hlevel 2)) 
   Ω¹ ( , base)       ≃⟨ ΩS¹≃Int 
  Int                     ≃∎

πₙSⁿ≃Int 1 = Iso→Equiv (i.to , iso i.from (happly i.invl) (happly i.invr)) where
  module i = Cat.Reasoning._≅_ (Sets lzero) (F-map-iso (Forget-structure _) π₂S²≅ℤ)

πₙSⁿ≃Int (suc (suc n)) =
   πₙ₊₁ (2 + n) (Sⁿ (3 + n)) 
    ≃⟨ πₙ-def (Sⁿ (3 + n)) (2 + n) .fst 
   Ωⁿ (3 + n) (n-Tr∙ (Sⁿ (3 + n)) (suc ((2 + n) + 2))) 
    ≃⟨ Ωⁿ-suc _ (2 + n) .fst 
   Ωⁿ (2 + n) ((Ωⁿ 1 (n-Tr∙ (Sⁿ (3 + n)) (3 + n + 2)))) 
    ≃⟨ Ωⁿ-ap (2 + n) (Equiv∙.inverse (n-Tr-Ω¹ _ (1 + n + 2))) .fst 
   Ωⁿ (2 + n) (n-Tr∙ (Ωⁿ 1 (Sⁿ (3 + n))) (2 + n + 2)) 
    ≃⟨
      (let
        ix = s≤s (s≤s (≤-trans (+-≤l (n + 2) n) (≤-refl' (sym (+-associative n 2 n)))))
        eqv = Sⁿ-stability-worker (1 + n) (1 + n + 2) ix
      in Ωⁿ-ap (2 + n) (Equiv∙.inverse eqv) .fst) 
   Ωⁿ (2 + n) (n-Tr∙ (Sⁿ (2 + n)) (2 + n + 2)) 
    ≃⟨ Equiv.inverse (πₙ-def (Sⁿ (2 + n)) (1 + n) .fst) 
   πₙ₊₁ (1 + n) (Sⁿ (2 + n)) 
    ≃⟨ πₙSⁿ≃Int (suc n) 
    
    ≃∎