module Homotopy.Space.Sphere.Properties where
Properties of higher spheres🔗
We can put together what we know about of a suspension and about the fundamental group of the circle to show that
opaque π₂S²≅ℤ : πₙ₊₁ 1 (Sⁿ 2) Groups.≅ ℤ π₂S²≅ℤ = π₁S¹≅ℤ Groups.∘Iso (π₂ΣG≅ΩG S¹-concrete HSpace-S¹) Groups.∘Iso πₙ₊₁-ap 1 (Susp-ap SuspS⁰≃S¹ , refl)
The inverse to this equivalence, turning integers into 2-loops on the sphere, is constructed purely abstractly and thus too horrible to compute with. However, the forward map, giving the winding numbers of 2-loops, is more tractable. We can write down an explicit generator for and assert that the equivalence above takes it to the number by computation.
private opaque unfolding conj conj-refl conj-of-refl π₂S²≅ℤ gen : Path (Path ⌞ Sⁿ 2 ⌟ north north) refl refl gen i j = hcomp (∂ i ∨ ∂ j) λ where k (k = i0) → merid (suspend (Sⁿ 0) south (~ j)) i k (i = i0) → north k (i = i1) → merid north (~ k) k (j = i0) → merid north (~ k ∧ i) k (j = i1) → merid north (~ k ∧ i) π₂S²≅ℤ-computes : Groups.to π₂S²≅ℤ · inc gen ≡ 1 π₂S²≅ℤ-computes = refl
Stability for spheres🔗
The Freudenthal suspension theorem implies that, if the of agrees with that of
Sⁿ-stability-worker : ∀ n k (p : suc k ≤ (suc n + suc n)) → n-Tr∙ (Sⁿ (1 + n)) (suc k) ≃∙ n-Tr∙ (Ωⁿ 1 (Sⁿ (2 + n))) (suc k) Sⁿ-stability-worker n k p = n-Tr∙ (Sⁿ (1 + n)) (suc k) ≃∙˘⟨ n-Tr-Tr (≤-peel p) , refl ⟩≃∙˘ n-Tr∙ (n-Tr∙ (Sⁿ (1 + n)) (suc n + suc n)) (suc k) ≃∙⟨ (let e , p = freudenthal-equivalence {A∙ = Sⁿ (suc n)} n (Sⁿ⁻¹-is-connected (2 + n)) in n-Tr-ap {n = k} e , ap n-Tr.inc p) ⟩≃∙ n-Tr∙ (n-Tr∙ (Ωⁿ 1 (Σ¹ (Sⁿ (1 + n)))) (suc n + suc n)) (suc k) ≃∙⟨⟩ n-Tr∙ (n-Tr∙ (Ωⁿ 1 (Sⁿ (2 + n))) (suc n + suc n)) (suc k) ≃∙⟨ n-Tr-Tr (≤-peel p) , refl ⟩≃∙ n-Tr∙ (Ωⁿ 1 (Sⁿ (2 + n))) (suc k) ≃∙∎
As a corollary,
πₙSⁿ≃Int : ∀ n → ⌞ πₙ₊₁ n (Sⁿ (suc n)) ⌟ ≃ ⌞ ℤ ⌟ πₙSⁿ≃Int 0 = ∥ ⌞ Ω¹ (Sⁿ 1) ⌟ ∥₀ ≃⟨ ∥-∥₀-ap (Ωⁿ-ap 1 (SuspS⁰≃S¹ , refl) .fst) ⟩≃ ∥ ⌞ Ω¹ (S¹ , base) ⌟ ∥₀ ≃⟨ Equiv.inverse (_ , ∥-∥₀-idempotent (hlevel 2)) ⟩≃ ⌞ Ω¹ (S¹ , base) ⌟ ≃⟨ ΩS¹≃Int ⟩≃ Int ≃∎ πₙSⁿ≃Int 1 = Iso→Equiv (i.to , iso i.from (happly i.invl) (happly i.invr)) where module i = Cat.Reasoning._≅_ (Sets lzero) (F-map-iso (Forget-structure _) π₂S²≅ℤ) πₙSⁿ≃Int (suc (suc n)) = ⌞ πₙ₊₁ (2 + n) (Sⁿ (3 + n)) ⌟ ≃⟨ πₙ-def (Sⁿ (3 + n)) (2 + n) .fst ⟩≃ ⌞ Ωⁿ (3 + n) (n-Tr∙ (Sⁿ (3 + n)) (suc ((2 + n) + 2))) ⌟ ≃⟨ Ωⁿ-suc _ (2 + n) .fst ⟩≃ ⌞ Ωⁿ (2 + n) ((Ωⁿ 1 (n-Tr∙ (Sⁿ (3 + n)) (3 + n + 2)))) ⌟ ≃⟨ Ωⁿ-ap (2 + n) (Equiv∙.inverse (n-Tr-Ω¹ _ (1 + n + 2))) .fst ⟩≃ ⌞ Ωⁿ (2 + n) (n-Tr∙ (Ωⁿ 1 (Sⁿ (3 + n))) (2 + n + 2)) ⌟ ≃⟨ (let ix = s≤s (s≤s (≤-trans (+-≤l (n + 2) n) (≤-refl' (sym (+-associative n 2 n))))) eqv = Sⁿ-stability-worker (1 + n) (1 + n + 2) ix in Ωⁿ-ap (2 + n) (Equiv∙.inverse eqv) .fst) ⟩≃ ⌞ Ωⁿ (2 + n) (n-Tr∙ (Sⁿ (2 + n)) (2 + n + 2)) ⌟ ≃⟨ Equiv.inverse (πₙ-def (Sⁿ (2 + n)) (1 + n) .fst) ⟩≃ ⌞ πₙ₊₁ (1 + n) (Sⁿ (2 + n)) ⌟ ≃⟨ πₙSⁿ≃Int (suc n) ⟩≃ ⌞ ℤ ⌟ ≃∎