module 1Lab.Type where
Universesπ
A universe is a type whose inhabitants are types. In
Agda, there is a family of universes, which, by default, is called
Set
. Rather recently, Agda gained a flag to make
Set
not act like a keyword, and allow renaming it in an
import declaration from the Agda.Primitive
module.
open import Prim.Type hiding (Prop) public
Type
is a type itself, so itβs
a natural question to ask: does it belong to a universe? The answer is
yes. However, Type can not belong to itself, or we could
reproduce Russellβs
paradox.
To prevent this, the universes are parametrised by a Level
, where the
collection of all β
-sized types is
Type (lsuc β)
:
_ : (β : Level) β Type (lsuc β) _ = Ξ» β β Type β level-of : {β : Level} β Type β β Level level-of {β} _ = β
Built-in typesπ
We re-export the following very important types:
open import Prim.Data.Sigma public open import Prim.Data.Bool public open import Prim.Data.Nat hiding (_<_) public
Additionally, we define the empty type:
data β₯ : Type where absurd : β {β} {A : Type β} β .β₯ β A absurd () Β¬_ : β {β} β Type β β Type β Β¬ A = A β β₯ infix 6 Β¬_
The non-dependent product type _Γ_
can be defined in
terms of the dependent sum type:
_Γ_ : β {a b} β Type a β Type b β Type _ A Γ B = Ξ£[ _ β A ] B infixr 5 _Γ_
Liftingπ
There is a function which lifts a type to a higher universe:
record Lift {a} β (A : Type a) : Type (a β β) where constructor lift field lower : A
Function compositionπ
Since the following definitions are fundamental, they deserve a place in this module:
_β_ : β {ββ ββ ββ} {A : Type ββ} {B : A β Type ββ} {C : (x : A) β B x β Type ββ} β (β {x} β (y : B x) β C x y) β (f : β x β B x) β β x β C x (f x) f β g = Ξ» z β f (g z) infixr 40 _β_ id : β {β} {A : Type β} β A β A id x = x {-# INLINE id #-} infixr -1 _$_ _$α΅’_ _$β_ _$_ : β {ββ ββ} {A : Type ββ} {B : A β Type ββ} β ((x : A) β B x) β ((x : A) β B x) f $ x = f x {-# INLINE _$_ #-} _$α΅’_ : β {ββ ββ} {A : Type ββ} {B : .A β Type ββ} β (.(x : A) β B x) β (.(x : A) β B x) f $α΅’ x = f x {-# INLINE _$α΅’_ #-} _$β_ : β {ββ ββ} {A : Type ββ} {B : A β SSet ββ} β ((x : A) β B x) β ((x : A) β B x) f $β x = f x {-# INLINE _$β_ #-}
open import Prim.Literals public auto : β {β} {A : Type β} β β¦ A β¦ β A auto β¦ a β¦ = a case_of_ : β {β β'} {A : Type β} {B : Type β'} β A β (A β B) β B case x of f = f x case_return_of_ : β {β β'} {A : Type β} (x : A) (B : A β Type β') (f : (x : A) β B x) β B x case x return P of f = f x {-# INLINE case_of_ #-} {-# INLINE case_return_of_ #-} instance Number-Lift : β {β β'} {A : Type β} β β¦ Number A β¦ β Number (Lift β' A) Number-Lift {β' = β'} β¦ a β¦ .Number.Constraint n = Lift β' (a .Number.Constraint n) Number-Lift β¦ a β¦ .Number.fromNat n β¦ lift c β¦ = lift (a .Number.fromNat n β¦ c β¦) absurdΟ : {A : TypeΟ} β .β₯ β A absurdΟ ()