module Homotopy.Space.Suspension.Pi2 {ℓ} (grp : ConcreteGroup ℓ) (hg : HSpace (grp .B)) where
π₂ of a suspension🔗
open ConcreteGroup grp renaming (B to BG ; pt to G₀) using () open HSpace {ℓ = ℓ} {A* = BG} hg private G : Type ℓ G = ⌞ grp ⌟ ΣG : Type ℓ ΣG = Susp G ∥_∥₁ : Type ℓ → Type ℓ ∥ X ∥₁ = n-Tr X 3 μr : ∀ a → ⌞ G ⌟ ≃ ⌞ G ⌟ μr a = _ , μ-invr a
We will prove that the second homotopy group of the suspension of a pointed connected groupoid (hence an abelian concrete group) with an h-space structure is
We start by defining a type family Hopf
over
which is
on both poles and sends the
merid
ian to the H-space
multiplication
on the right, which is an equivalence by assumption. We will show, by an
encode-decode argument, that the groupoid truncation
is equivalent to the fibre of Hopf
over
As the name implies, the Hopf
type family is the
synthetic equivalent of the classic Hopf fibration, though here we have
evidently generalised it beyond a map
Below we prove that the total space of
the Hopf
is
the join
Hopf : ΣG → Type _ Hopf north = G Hopf south = G Hopf (merid x i) = ua (μr x) i
To encode, we use truncation recursion, since codes
is a family of groupoids by
construction, and since we have
we can transport it along a
to get a point in an arbitrary fibre.
encode' : ∀ x → ∥ north ≡ x ∥₁ → Hopf x encode' x = n-Tr-rec (tr x) λ p → subst Hopf p G₀ where tr : ∀ x → is-groupoid (Hopf x) tr = Susp-elim-prop (λ s → hlevel 1) (grp .has-is-groupoid) (grp .has-is-groupoid)
To decode an element of codes
we
use suspension recursion. On the north pole we can use the suspension
homomorphism
on the south pole this is just a meridian; and on the meridians we must
prove that these agree. Through a short calculation we can reduce this
to a coherence lemma relating the composition of meridians and the
H-space multiplication.
decode' : ∀ x → Hopf x → ∥ north ≡ x ∥₁ decode' = Susp-elim _ (n-Tr.inc ∘ suspend BG) (n-Tr.inc ∘ merid) λ x → ua→ λ a → to-pathp $ inc (subst (north ≡_) (merid x) (suspend BG a)) ≡⟨ ap n-Tr.inc (subst-path-right (suspend BG a) (merid x)) ⟩≡ inc ((merid a ∙ sym (merid G₀)) ∙ merid x) ≡˘⟨ ap n-Tr.inc (∙-assoc _ _ _) ⟩≡˘ inc (merid a ∙ sym (merid G₀) ∙ merid x) ≡⟨ merid-μ a x ⟩≡ inc (merid (μ a x)) ∎ where
To show this coherence, we can use the wedge connectivity lemma. It will
suffice to do so when, in turn,
when
and then to show that these agree. In either case we must show something
like
which is easy to do with the pre-existence coherence lemmas ∙∙-introl
and ∙∙-intror
, and the H-space
unit laws.
merid-μ : ∀ a b → inc (merid a ∙ sym (merid G₀) ∙ merid b) ≡ inc (merid (μ a b)) merid-μ = let α = merid G₀ P : (a b : ⌞ G ⌟) → Type ℓ P a b = Path ∥ north ≡ south ∥₁ (inc (merid a ∙ sym α ∙ merid b)) (inc (merid (μ a b))) p1 : ∀ a → P a G₀ p1 a = ap n-Tr.inc $ sym (double-composite _ _ _) ∙∙ sym (∙∙-intror (merid a) (sym α)) ∙∙ ap merid (sym (idr a)) p2 : ∀ b → P G₀ b p2 b = ap n-Tr.inc $ sym (double-composite _ _ _) ∙∙ sym (∙∙-introl (merid b) α) ∙∙ ap merid (sym (idl b))
Moreover, it is easy to show that these agree: by construction we’re
left with showing that ∙∙-introl
and ∙∙-intror
agree when all three paths are the same, and by path induction we may
assume that this one path is refl; In that case, they agree
definitionally.
coh : p1 G₀ ≡ p2 G₀ coh = ap (ap n-Tr.inc) $ ap₂ (_∙∙_∙∙_ (sym (double-composite α (sym α) α))) (ap sym (J (λ y p → ∙∙-intror p (sym p) ≡ ∙∙-introl p p) refl α)) (ap (ap merid ∘ sym) (sym id-coh)) c = is-connected∙→is-connected (grp .has-is-connected) in Wedge.elim {A∙ = BG} {BG} 0 0 c c (λ _ _ → hlevel 2) p1 p2 coh
We have thus constructed maps between
and the truncation of the based path space
We must then show that these are inverses, which, in both direction, are
simple calculations.
π₁ΩΣG≃G : ∥ north ≡ north ∥₁ ≃ G
π₁ΩΣG≃G .fst = encode' north
π₁ΩΣG≃G .snd = is-iso→is-equiv (iso (decode' north) invl (invr north)) where invl : ∀ a → encode' north (decode' north a) ≡ a invl a = Regularity.fast! ( Equiv.from (flip μ G₀ , μ-invr G₀) (μ G₀ a) ≡⟨ ap (λ e → Equiv.from e (μ G₀ a)) {x = _ , μ-invr G₀} {y = id≃} (ext idr) ⟩≡ μ G₀ a ≡⟨ idl a ⟩≡ a ∎)
To show that decoding inverts encoding, we use the extra generality afforded by the parameter to apply path induction.
invr : (x : ΣG) (p : ∥ north ≡ x ∥₁) → decode' x (encode' x p) ≡ p invr x = n-Tr-elim! _ $ J (λ x p → decode' x (encode' x (inc p)) ≡ inc p) (ap n-Tr.inc ( ap₂ _∙_ (ap merid (transport-refl _)) refl ∙ ∙-invr (merid G₀)))
Finally, we can use some pre-existing lemmas to show that our result above, about the groupoid truncation transfer to the homotopy group which is a set truncation of a double loop space. Another short calculation which we omit shows that this equivalence preserves path composition, i.e. it is an isomorphism of groups.
π₂ΣG≅ΩG : πₙ₊₁ 1 (Σ¹ BG) Groups.≅ π₁Groupoid.π₁ BG (grp .has-is-groupoid) Ω²ΣG≃ΩG = ∥ ⌞ Ωⁿ 2 (Σ¹ BG) ⌟ ∥₀ ≃⟨ n-Tr-set ⟩≃ n-Tr ⌞ Ωⁿ 2 (Σ¹ BG) ⌟ 2 ≃˘⟨ n-Tr-path-equiv {n = 1} ⟩≃˘ ⌞ Ω¹ (∥ ⌞ Ωⁿ 1 (Σ¹ BG) ⌟ ∥₁ , inc refl) ⌟ ≃⟨ ap-equiv π₁ΩΣG≃G ⟩≃ ⌞ Ω¹ (⌞ G ⌟ , transport refl G₀) ⌟ ≃⟨ _ , conj-is-equiv (transport-refl _) ⟩≃ ⌞ Ω¹ BG ⌟ ≃∎
π₂ΣG≅ΩG = total-iso Ω²ΣG≃ΩG (record { pres-⋆ = elim! coh }) where open Σ Ω²ΣG≃ΩG renaming (fst to f0) using () instance _ : ∀ {n} → H-Level ⌞ G ⌟ (3 + n) _ = basic-instance 3 (grp .has-is-groupoid) f1 : n-Tr (refl ≡ refl) 2 → inc refl ≡ inc refl f1 = Equiv.from (n-Tr-path-equiv {n = 1}) f2 : inc refl ≡ inc refl → transport refl G₀ ≡ transport refl G₀ f2 = ap· π₁ΩΣG≃G f3 : transport refl G₀ ≡ transport refl G₀ → G₀ ≡ G₀ f3 = conj (transport-refl _) coh : (p q : refl ≡ refl) → f0 (inc (p ∙ q)) ≡ f0 (inc p) ∙ f0 (inc q) coh p q = ap f3 (ap f2 (ap-∙ n-Tr.inc p q)) ∙∙ ap f3 (ap-∙ (π₁ΩΣG≃G .fst) (f1 (inc p)) (f1 (inc q))) ∙∙ conj-of-∙ (transport-refl _) _ _
The Hopf fibration🔗
We can now prove that the total space of the Hopf fibration defined above is the join of with itself.
join→hopf : (G ∗ G) → Σ _ Hopf join→hopf (inl x) = north , x join→hopf (inr x) = south , x join→hopf (join a b i) = record { fst = merid (a \\ b) i ; snd = attach (∂ i) (λ { (i = i0) → a ; (i = i1) → b }) (inS (μ-\\-l a b i)) }
join→hopf-split : ∀ x p → fibre join→hopf (x , p) join→hopf-split = Susp-elim _ (λ p → inl p , refl) (λ p → inr p , refl) (λ x i → filler x i i1) module surj where module _ (x : fst BG) where coh : ∀ a → PathP (λ i → fibre join→hopf (merid x i , ua-inc (μr x) a i)) (inl a , refl) (inr (μ a x) , refl) coh a i .fst = join a (μ a x) i coh a i .snd j .fst = merid (μ-\\-r a x j) i coh a i .snd j .snd = attach (∂ i) (λ { (i = i0) → a ; (i = i1) → μ a x }) (inS (∨-square (μ-zig a x) j i)) open ua→ {e = μr x} {B = λ i z → fibre join→hopf (merid x i , z)} {f₀ = λ p → inl p , refl} {f₁ = λ p → inr p , refl} coh public hopf→join : (Σ _ Hopf) → G ∗ G hopf→join a = uncurry join→hopf-split a .fst hopf→join→hopf : is-right-inverse hopf→join join→hopf hopf→join→hopf a = uncurry join→hopf-split a .snd join→hopf→join : is-left-inverse hopf→join join→hopf join→hopf→join (inl x) = refl join→hopf→join (inr x) = refl join→hopf→join (join a b i) = let it = attach (∂ i) (λ { (i = i0) → a ; (i = i1) → b }) (inS (μ-\\-l a b i)) in comp (λ l → surj.filler (a \\ b) i l it .fst ≡ join a b i) (∂ i) λ where j (j = i0) → λ k → join a (μ-\\-l a b (i ∨ k)) (~ k ∨ i) j (i = i0) → λ k → join a (μ-\\-l a b k) (~ j ∧ ~ k) j (i = i1) → λ k → inr b ∫Hopf≃join : Σ _ Hopf ≃ (⌞ G ⌟ ∗ ⌞ G ⌟) ∫Hopf≃join .fst = hopf→join ∫Hopf≃join .snd = is-iso→is-equiv (iso join→hopf join→hopf→join hopf→join→hopf)