module Cat.Morphism {o h} (C : Precategory o h) where

Morphisms🔗

This module defines the three most important classes of morphisms that can be found in a category: monomorphisms, epimorphisms, and isomorphisms.

Monos🔗

A morphism is said to be monic when it is left-cancellable. A monomorphism from to written is a monic morphism.

is-monic : Hom a b  Type _
is-monic {a = a} f =  {c}  (g h : Hom c a)  f  g  f  h  g  h

is-monic-is-prop :  {a b} (f : Hom a b)  is-prop (is-monic f)
is-monic-is-prop f x y i {c} g h p = Hom-set _ _ _ _ (x g h p) (y g h p) i

record _↪_ (a b : Ob) : Type (o  h) where
  constructor make-mono
  field
    mor   : Hom a b
    monic : is-monic mor

open _↪_ public

Conversely, a morphism is said to be epic when it is right-cancellable. An epimorphism from to written is an epic morphism.

Epis🔗

is-epic : Hom a b  Type _
is-epic {b = b} f =  {c}  (g h : Hom b c)  g  f  h  f  g  h

is-epic-is-prop :  {a b} (f : Hom a b)  is-prop (is-epic f)
is-epic-is-prop f x y i {c} g h p = Hom-set _ _ _ _ (x g h p) (y g h p) i

record _↠_ (a b : Ob) : Type (o  h) where
  constructor make-epi
  field
    mor  : Hom a b
    epic : is-epic mor

open _↠_ public

The identity morphism is monic and epic.

id-monic :  {a}  is-monic (id {a})
id-monic g h p = sym (idl _) ·· p ·· idl _

id-epic :  {a}  is-epic (id {a})
id-epic g h p = sym (idr _) ·· p ·· idr _

Both monos and epis are closed under composition.

monic-∘
  :  {a b c} {f : Hom b c} {g : Hom a b}
   is-monic f
   is-monic g
   is-monic (f  g)
monic-∘ fm gm a b α = gm _ _ (fm _ _ (assoc _ _ _ ·· α ·· sym (assoc _ _ _)))

epic-∘
  :  {a b c} {f : Hom b c} {g : Hom a b}
   is-epic f
   is-epic g
   is-epic (f  g)
epic-∘ fe ge a b α = fe _ _ (ge _ _ (sym (assoc _ _ _) ·· α ·· (assoc _ _ _)))

_∘Mono_ :  {a b c}  b  c  a  b  a  c
(f ∘Mono g) .mor = f .mor  g .mor
(f ∘Mono g) .monic = monic-∘ (f .monic) (g .monic)

_∘Epi_ :  {a b c}  b  c  a  b  a  c
(f ∘Epi g) .mor = f .mor  g .mor
(f ∘Epi g) .epic = epic-∘ (f .epic) (g .epic)

If is monic, then must also be monic.

monic-cancell
  :  {a b c} {f : Hom b c} {g : Hom a b}
   is-monic (f  g)
   is-monic g
monic-cancell {f = f} fg-monic h h' p = fg-monic h h' $
  sym (assoc _ _ _) ·· ap (f ∘_) p ·· assoc _ _ _

Dually, if is epic, then must also be epic.

epic-cancelr
  :  {a b c} {f : Hom b c} {g : Hom a b}
   is-epic (f  g)
   is-epic f
epic-cancelr {g = g} fg-epic h h' p = fg-epic h h' $
  assoc _ _ _ ·· ap (_∘ g) p ·· sym (assoc _ _ _)

Postcomposition with a mono is an embedding.

monic-postcomp-embedding
  :  {a b c} {f : Hom b c}
   is-monic f
   is-embedding {A = Hom a b} (f ∘_)
monic-postcomp-embedding monic =
  injective→is-embedding (Hom-set _ _) _ (monic _ _)

Likewise, precomposition with an epi is an embedding.

epic-precomp-embedding
  :  {a b c} {f : Hom a b}
   is-epic f
   is-embedding {A = Hom b c} (_∘ f)
epic-precomp-embedding epic =
  injective→is-embedding (Hom-set _ _) _ (epic _ _)

Sections🔗

A morphism is a section of another morphism when The intuition for this name is that picks out a cross-section of from For instance, could map animals to their species; a section of this map would have to pick out a canonical representative of each species from the set of all animals.

_section-of_ : (s : Hom b a) (r : Hom a b)  Type _
s section-of r = r  s  id

section-of-is-prop
  :  {s : Hom b a} {r : Hom a b}
   is-prop (s section-of r)
section-of-is-prop = Hom-set _ _ _ _

record has-section (r : Hom a b) : Type h where
  constructor make-section
  field
    section : Hom b a
    is-section : section section-of r

open has-section public

The identity map has a section (namely, itself), and the composite of maps with sections also has a section.

id-has-section :  {a}  has-section (id {a})
id-has-section .section = id
id-has-section .is-section = idl _

section-of-∘
  :  {a b c} {f : Hom c b} {g : Hom b c} {h : Hom b a} {i : Hom a b}
   f section-of g  h section-of i
   (h  f) section-of (g  i)
section-of-∘ {f = f} {g = g} {h = h} {i = i} fg-sect hi-sect =
  (g  i)  h  f ≡⟨ cat! C 
  g  (i  h)  f ≡⟨ ap  ϕ  g  ϕ  f) hi-sect 
  g  id  f      ≡⟨ ap (g ∘_) (idl _) 
  g  f           ≡⟨ fg-sect 
  id 

section-∘
  :  {a b c} {f : Hom b c} {g : Hom a b}
   has-section f  has-section g  has-section (f  g)
section-∘ f-sect g-sect .section = g-sect .section  f-sect .section
section-∘ {f = f} {g = g} f-sect g-sect .is-section =
  section-of-∘ (f-sect .is-section) (g-sect .is-section)

Moreover, if has a section, then so does

section-cancell
  :  {a b c} {f : Hom b c} {g : Hom a b}
   has-section (f  g)
   has-section f
section-cancell {g = g} s .section = g  s .section
section-cancell {g = g} s .is-section = assoc _ _ _  s .is-section

If has a section, then is epic.

has-section→epic
  :  {a b} {f : Hom a b}
   has-section f
   is-epic f
has-section→epic {f = f} f-sect g h p =
  g                         ≡˘⟨ idr _ ≡˘
  g  id                    ≡˘⟨ ap (g ∘_) (f-sect .is-section) ≡˘
  g  f  f-sect .section   ≡⟨ assoc _ _ _ 
  (g  f)  f-sect .section ≡⟨ ap (_∘ f-sect .section) p 
  (h  f)  f-sect .section ≡˘⟨ assoc _ _ _ ≡˘
  h  f  f-sect .section   ≡⟨ ap (h ∘_) (f-sect .is-section) 
  h  id                    ≡⟨ idr _ 
  h 

Retracts🔗

A morphism is a retract of another morphism when Note that this is the same equation involved in the definition of a section; retracts and sections always come in pairs. If sections solve a sort of “curation problem” where we are asked to pick out canonical representatives, then retracts solve a sort of “classification problem”.

_retract-of_ : (r : Hom a b) (s : Hom b a)  Type _
r retract-of s = r  s  id

retract-of-is-prop
  :  {s : Hom b a} {r : Hom a b}
   is-prop (r retract-of s)
retract-of-is-prop = Hom-set _ _ _ _

record has-retract (s : Hom b a) : Type h where
  constructor make-retract
  field
    retract : Hom a b
    is-retract : retract retract-of s

open has-retract public

The identity map has a retract (namely, itself), and the composite of maps with retracts also has a retract.

id-has-retract :  {a}  has-retract (id {a})
id-has-retract .retract = id
id-has-retract .is-retract = idl _

retract-of-∘
  :  {a b c} {f : Hom c b} {g : Hom b c} {h : Hom b a} {i : Hom a b}
   f retract-of g  h retract-of i
   (h  f) retract-of (g  i)
retract-of-∘ fg-ret hi-ret = section-of-∘ hi-ret fg-ret

retract-∘
  :  {a b c} {f : Hom b c} {g : Hom a b}
   has-retract f  has-retract g
   has-retract (f  g)
retract-∘ f-ret g-ret .retract = g-ret .retract  f-ret .retract
retract-∘ f-ret g-ret .is-retract =
  retract-of-∘ (f-ret .is-retract) (g-ret .is-retract)

If has a retract, then so does

retract-cancelr
  :  {a b c} {f : Hom b c} {g : Hom a b}
   has-retract (f  g)
   has-retract g
retract-cancelr {f = f} r .retract = r .retract  f
retract-cancelr {f = f} r .is-retract = sym (assoc _ _ _)  r .is-retract

If has a retract, then is monic.

has-retract→monic
  :  {a b} {f : Hom a b}
   has-retract f
   is-monic f
has-retract→monic {f = f} f-ret g h p =
  g                        ≡˘⟨ idl _ ≡˘
  id  g                   ≡˘⟨ ap (_∘ g) (f-ret .is-retract) ≡˘
  (f-ret .retract  f)  g ≡˘⟨ assoc _ _ _ ≡˘
  f-ret .retract  (f  g) ≡⟨ ap (f-ret .retract ∘_) p 
  f-ret .retract  f  h   ≡⟨ assoc _ _ _ 
  (f-ret .retract  f)  h ≡⟨ ap (_∘ h) (f-ret .is-retract) 
  id  h                   ≡⟨ idl _ 
  h                        

A section that is also epic is a retract.

section-of+epic→retract-of
  :  {a b} {s : Hom b a} {r : Hom a b}
   s section-of r
   is-epic s
   s retract-of r
section-of+epic→retract-of {s = s} {r = r} sect epic =
  epic (s  r) id $
    (s  r)  s ≡˘⟨ assoc s r s ≡˘
    s  (r  s) ≡⟨ ap (s ∘_) sect 
    s  id      ≡⟨ idr _ 
    s           ≡˘⟨ idl _ ≡˘
    id  s      

Dually, a retract that is also monic is a section.

retract-of+monic→section-of
  :  {a b} {s : Hom b a} {r : Hom a b}
   r retract-of s
   is-monic r
   r section-of s
retract-of+monic→section-of {s = s} {r = r} ret monic =
  monic (s  r) id $
    r  s  r   ≡⟨ assoc r s r 
    (r  s)  r ≡⟨ ap (_∘ r) ret 
    id  r      ≡⟨ idl _ 
    r           ≡˘⟨ idr _ ≡˘
    r  id      

Split monomorphisms🔗

A morphism is a split monomorphism if it merely has a retract.

is-split-monic : Hom a b  Type _
is-split-monic f =  has-retract f 

Every split mono is a mono, as being monic is a proposition.

split-monic→mono : is-split-monic f  is-monic f
split-monic→mono = rec! has-retract→monic

Split epimorphisms🔗

Dually, a morphism is a split epimorphism if it merely has a section.

is-split-epic : Hom a b  Type _
is-split-epic f =  has-section f 

Like split monos, every split epimorphism is an epimorphism.

split-epic→epic : is-split-epic f  is-epic f
split-epic→epic = rec! has-section→epic

Isos🔗

Maps and are inverses when we have and both equal to the identity. A map is invertible (or is an isomorphism) when there exists a for which and are inverses. An isomorphism is a choice of map together with a specified inverse.

record Inverses (f : Hom a b) (g : Hom b a) : Type h where
  field
    invl : f  g  id
    invr : g  f  id

open Inverses

record is-invertible (f : Hom a b) : Type h where
  field
    inv : Hom b a
    inverses : Inverses f inv

  open Inverses inverses public

  op : is-invertible inv
  op .inv = f
  op .inverses .Inverses.invl = invr inverses
  op .inverses .Inverses.invr = invl inverses

record _≅_ (a b : Ob) : Type h where
  field
    to       : Hom a b
    from     : Hom b a
    inverses : Inverses to from

  open Inverses inverses public

open _≅_ public

A given map is invertible in at most one way: If you have with two inverses and then not only are equal, but the witnesses of these equalities are irrelevant.

Inverses-are-prop :  {f : Hom a b} {g : Hom b a}  is-prop (Inverses f g)
Inverses-are-prop x y i .Inverses.invl = Hom-set _ _ _ _ (x .invl) (y .invl) i
Inverses-are-prop x y i .Inverses.invr = Hom-set _ _ _ _ (x .invr) (y .invr) i

is-invertible-is-prop :  {f : Hom a b}  is-prop (is-invertible f)
is-invertible-is-prop {a = a} {b = b} {f = f} g h = p where
  module g = is-invertible g
  module h = is-invertible h

  g≡h : g.inv  h.inv
  g≡h =
    g.inv             ≡⟨ sym (idr _)  ap₂ _∘_ refl (sym h.invl) 
    g.inv  f  h.inv ≡⟨ assoc _ _ _ ·· ap₂ _∘_ g.invr refl ·· idl _ 
    h.inv             

  p : g  h
  p i .is-invertible.inv = g≡h i
  p i .is-invertible.inverses =
    is-prop→pathp  i  Inverses-are-prop {g = g≡h i}) g.inverses h.inverses i

We note that the identity morphism is always iso, and that isos compose:

id-invertible :  {a}  is-invertible (id {a})
id-invertible .is-invertible.inv = id
id-invertible .is-invertible.inverses .invl = idl id
id-invertible .is-invertible.inverses .invr = idl id

id-iso : a  a
id-iso .to = id
id-iso .from = id
id-iso .inverses .invl = idl id
id-iso .inverses .invr = idl id

Isomorphism = _≅_

Inverses-∘ : {a b c : Ob} {f : Hom b c} {f⁻¹ : Hom c b} {g : Hom a b} {g⁻¹ : Hom b a}
            Inverses f f⁻¹  Inverses g g⁻¹  Inverses (f  g) (g⁻¹  f⁻¹)
Inverses-∘ {f = f} {f⁻¹} {g} {g⁻¹} finv ginv = record { invl = l ; invr = r } where
  module finv = Inverses finv
  module ginv = Inverses ginv

  abstract
    l : (f  g)  g⁻¹  f⁻¹  id
    l = (f  g)  g⁻¹  f⁻¹ ≡⟨ cat! C 
        f  (g  g⁻¹)  f⁻¹ ≡⟨  i  f  ginv.invl i  f⁻¹) 
        f  id  f⁻¹        ≡⟨ cat! C 
        f  f⁻¹             ≡⟨ finv.invl 
        id                  

    r : (g⁻¹  f⁻¹)  f  g  id
    r = (g⁻¹  f⁻¹)  f  g ≡⟨ cat! C 
        g⁻¹  (f⁻¹  f)  g ≡⟨  i  g⁻¹  finv.invr i  g) 
        g⁻¹  id  g        ≡⟨ cat! C 
        g⁻¹  g             ≡⟨ ginv.invr 
        id                  

_∘Iso_ :  {a b c : Ob}  b  c  a  b  a  c
(f ∘Iso g) .to = f .to  g .to
(f ∘Iso g) .from = g .from  f .from
(f ∘Iso g) .inverses = Inverses-∘ (f .inverses) (g .inverses)

_∙Iso_ :  {a b c : Ob}  a  b  b  c  a  c
f ∙Iso g = g ∘Iso f

infixr 40 _∘Iso_ _∙Iso_
infixr 41 _Iso⁻¹

invertible-∘
  :  {f : Hom b c} {g : Hom a b}
   is-invertible f  is-invertible g
   is-invertible (f  g)
invertible-∘ f-inv g-inv = record
  { inv = g-inv.inv  f-inv.inv
  ; inverses = Inverses-∘ f-inv.inverses g-inv.inverses
  }
  where
    module f-inv = is-invertible f-inv
    module g-inv = is-invertible g-inv

_invertible⁻¹
  :  {f : Hom a b}  (f-inv : is-invertible f)
   is-invertible (is-invertible.inv f-inv)
_invertible⁻¹ {f = f} f-inv .is-invertible.inv = f
_invertible⁻¹ f-inv .is-invertible.inverses .invl =
  is-invertible.invr f-inv
_invertible⁻¹ f-inv .is-invertible.inverses .invr =
  is-invertible.invl f-inv

_Iso⁻¹ : a  b  b  a
(f Iso⁻¹) .to = f .from
(f Iso⁻¹) .from = f .to
(f Iso⁻¹) .inverses .invl = f .inverses .invr
(f Iso⁻¹) .inverses .invr = f .inverses .invl
make-inverses : {f : Hom a b} {g : Hom b a}  f  g  id  g  f  id  Inverses f g
make-inverses p q .invl = p
make-inverses p q .invr = q

make-invertible : {f : Hom a b}  (g : Hom b a)  f  g  id  g  f  id  is-invertible f
make-invertible g p q .is-invertible.inv = g
make-invertible g p q .is-invertible.inverses .invl = p
make-invertible g p q .is-invertible.inverses .invr = q

make-iso : (f : Hom a b) (g : Hom b a)  f  g  id  g  f  id  a  b
make-iso f g p q ._≅_.to = f
make-iso f g p q ._≅_.from = g
make-iso f g p q ._≅_.inverses .Inverses.invl = p
make-iso f g p q ._≅_.inverses .Inverses.invr = q

inverses→invertible :  {f : Hom a b} {g : Hom b a}  Inverses f g  is-invertible f
inverses→invertible x .is-invertible.inv = _
inverses→invertible x .is-invertible.inverses = x

invertible→iso : (f : Hom a b)  is-invertible f  a  b
invertible→iso f x =
  record
    { to       = f
    ; from     = x .is-invertible.inv
    ; inverses = x .is-invertible.inverses
    }

is-invertible-inverse
  : {f : Hom a b} (g : is-invertible f)  is-invertible (g .is-invertible.inv)
is-invertible-inverse g =
  record { inv = _ ; inverses = record { invl = invr g ; invr = invl g } }
  where open Inverses (g .is-invertible.inverses)

iso→invertible : (i : a  b)  is-invertible (i ._≅_.to)
iso→invertible i = record { inv = i ._≅_.from ; inverses = i ._≅_.inverses }

private
  ≅-pathp-internal
    : (p : a  c) (q : b  d)
     {f : a  b} {g : c  d}
     PathP  i  Hom (p i) (q i)) (f ._≅_.to) (g ._≅_.to)
     PathP  i  Hom (q i) (p i)) (f ._≅_.from) (g ._≅_.from)
     PathP  i  p i  q i) f g
  ≅-pathp-internal p q r s i .to = r i
  ≅-pathp-internal p q r s i .from = s i
  ≅-pathp-internal p q {f} {g} r s i .inverses =
    is-prop→pathp  j  Inverses-are-prop {f = r j} {g = s j})
      (f .inverses) (g .inverses) i

abstract
  inverse-unique
    : {x y : Ob} (p : x  y) {b d : Ob} (q : b  d) (f : x  b) (g : y  d)
     PathP  i  Hom (p i) (q i)) (f .to) (g .to)
     PathP  i  Hom (q i) (p i)) (f .from) (g .from)
  inverse-unique =
    J'  a c p   {b d} (q : b  d) (f : a  b) (g : c  d)
       PathP  i  Hom (p i) (q i)) (f .to) (g .to)
       PathP  i  Hom (q i) (p i)) (f .from) (g .from))
      λ x  J'  b d q  (f : x  b) (g : x  d)
                 PathP  i  Hom x (q i)) (f .to) (g .to)
                 PathP  i  Hom (q i) x) (f .from) (g .from))
            λ y f g p 
              f .from                     ≡˘⟨ ap (f .from ∘_) (g .invl)  idr _ ≡˘
              f .from  g .to  g .from   ≡⟨ assoc _ _ _ 
              (f .from  g .to)  g .from ≡⟨ ap (_∘ g .from) (ap (f .from ∘_) (sym p)  f .invr)  idl _ 
              g .from                     

≅-pathp
  : (p : a  c) (q : b  d) {f : a  b} {g : c  d}
   PathP  i  Hom (p i) (q i)) (f ._≅_.to) (g ._≅_.to)
   PathP  i  p i  q i) f g
≅-pathp p q {f = f} {g = g} r = ≅-pathp-internal p q r (inverse-unique p q f g r)

≅-pathp-from
  : (p : a  c) (q : b  d) {f : a  b} {g : c  d}
   PathP  i  Hom (q i) (p i)) (f ._≅_.from) (g ._≅_.from)
   PathP  i  p i  q i) f g
≅-pathp-from p q {f = f} {g = g} r = ≅-pathp-internal p q (inverse-unique q p (f Iso⁻¹) (g Iso⁻¹) r) r

≅-path : {f g : a  b}  f ._≅_.to  g ._≅_.to  f  g
≅-path = ≅-pathp refl refl

≅-path-from : {f g : a  b}  f ._≅_.from  g ._≅_.from  f  g
≅-path-from = ≅-pathp-from refl refl

≅-is-contr : (∀ {a b}  is-contr (Hom a b))  is-contr (a  b)
≅-is-contr hom-contr .centre =
  make-iso (hom-contr .centre) (hom-contr .centre)
    (is-contr→is-prop hom-contr _ _)
    (is-contr→is-prop hom-contr _ _)
≅-is-contr hom-contr .paths f = ≅-path (hom-contr .paths (f .to))

≅-is-prop : (∀ {a b}  is-prop (Hom a b))  is-prop (a  b)
≅-is-prop hom-prop f g = ≅-path (hom-prop (f .to) (g .to))

↪-pathp
  : {a : I  Ob} {b : I  Ob} {f : a i0  b i0} {g : a i1  b i1}
   PathP  i  Hom (a i) (b i)) (f .mor) (g .mor)
   PathP  i  a i  b i) f g
↪-pathp {a = a} {b} {f} {g} pa = go where
  go : PathP  i  a i  b i) f g
  go i .mor = pa i
  go i .monic {c = c} =
    is-prop→pathp
       i  Π-is-hlevel {A = Hom c (a i)} 1
       λ g  Π-is-hlevel {A = Hom c (a i)} 1
       λ h  fun-is-hlevel {A = pa i  g  pa i  h} 1
              (Hom-set c (a i) g h))
      (f .monic)
      (g .monic)
      i

↠-pathp
  : {a : I  Ob} {b : I  Ob} {f : a i0  b i0} {g : a i1  b i1}
   PathP  i  Hom (a i) (b i)) (f .mor) (g .mor)
   PathP  i  a i  b i) f g
↠-pathp {a = a} {b} {f} {g} pa = go where
  go : PathP  i  a i  b i) f g
  go i .mor = pa i
  go i .epic {c = c} =
    is-prop→pathp
       i  Π-is-hlevel {A = Hom (b i) c} 1
       λ g  Π-is-hlevel {A = Hom (b i) c} 1
       λ h  fun-is-hlevel {A = g  pa i  h  pa i} 1
              (Hom-set (b i) c g h))
      (f .epic)
      (g .epic)
      i

subst-is-invertible
  :  {x y} {f g : Hom x y}
   f  g
   is-invertible f
   is-invertible g
subst-is-invertible f=g f-inv =
  make-invertible f.inv
    (ap (_∘ f.inv) (sym f=g)  f.invl)
    (ap (f.inv ∘_) (sym f=g)  f.invr)
  where module f = is-invertible f-inv

Isomorphisms enjoy a 2-out-of-3 property: if any 2 of and are isomorphisms, then so is the third.

inverses-cancell
  :  {f : Hom b c} {g : Hom a b} {g⁻¹ : Hom b a} {fg⁻¹ : Hom c a}
   Inverses g g⁻¹  Inverses (f  g) fg⁻¹
   Inverses f (g  fg⁻¹)

inverses-cancelr
  :  {f : Hom b c} {f⁻¹ : Hom c b} {g : Hom a b} {fg⁻¹ : Hom c a}
   Inverses f f⁻¹  Inverses (f  g) fg⁻¹
   Inverses g (fg⁻¹  f)

invertible-cancell
  :  {f : Hom b c} {g : Hom a b}
   is-invertible g  is-invertible (f  g)
   is-invertible f

invertible-cancelr
  :  {f : Hom b c} {g : Hom a b}
   is-invertible f  is-invertible (f  g)
   is-invertible g
We are early into our bootstrapping process for category theory, so the proofs of these lemmas are quite low-level, and thus omitted.
inverses-cancell g-inv fg-inv .invl =
  assoc _ _ _  fg-inv .invl
inverses-cancell g-inv fg-inv .invr =
  sym (idr _)
   ap₂ _∘_ refl (sym (g-inv .invl))
   assoc _ _ _
   ap₂ _∘_
    (sym (assoc _ _ _)
     sym (assoc _ _ _)
     ap₂ _∘_ refl (fg-inv .invr)
     idr _)
    refl
   g-inv .invl

inverses-cancelr f-inv fg-inv .invl =
  sym (idl _)
   ap₂ _∘_ (sym (f-inv .invr)) refl
   sym (assoc _ _ _)
   ap₂ _∘_ refl
    (assoc _ _ _
     assoc _ _ _
     ap₂ _∘_ (fg-inv .invl) refl
     idl _)
   f-inv .invr
inverses-cancelr f-inv fg-inv .invr =
  sym (assoc _ _ _)  fg-inv .invr

invertible-cancell g-inv fg-inv =
  inverses→invertible $
  inverses-cancell
    (g-inv .is-invertible.inverses)
    (fg-inv .is-invertible.inverses)

invertible-cancelr f-inv fg-inv =
  inverses→invertible $
  inverses-cancelr
    (f-inv .is-invertible.inverses)
    (fg-inv .is-invertible.inverses)

We also note that invertible morphisms are both epic and monic.

invertible→monic : is-invertible f  is-monic f
invertible→monic {f = f} invert g h p =
  g             ≡˘⟨ idl g ≡˘
  id  g        ≡˘⟨ ap (_∘ g) (is-invertible.invr invert) ≡˘
  (inv  f)  g ≡˘⟨ assoc inv f g ≡˘
  inv  (f  g) ≡⟨ ap (inv ∘_) p 
  inv  (f  h) ≡⟨ assoc inv f h 
  (inv  f)  h ≡⟨ ap (_∘ h) (is-invertible.invr invert) 
  id  h        ≡⟨ idl h 
  h 
  where
    open is-invertible invert

invertible→epic : is-invertible f  is-epic f
invertible→epic {f = f} invert g h p =
  g             ≡˘⟨ idr g ≡˘
  g  id        ≡˘⟨ ap (g ∘_) (is-invertible.invl invert) ≡˘
  g  (f  inv) ≡⟨ assoc g f inv 
  (g  f)  inv ≡⟨ ap (_∘ inv) p 
  (h  f)  inv ≡˘⟨ assoc h f inv ≡˘
  h  (f  inv) ≡⟨ ap (h  ∘_) (is-invertible.invl invert) 
  h  id        ≡⟨ idr h 
  h 
  where
    open is-invertible invert

iso→monic : (f : a  b)  is-monic (f .to)
iso→monic f = invertible→monic (iso→invertible f)

iso→epic : (f : a  b)  is-epic (f .to)
iso→epic f = invertible→epic (iso→invertible f)

Furthermore, isomorphisms also yield section/retraction pairs.

inverses→to-has-section
  :  {f : Hom a b} {g : Hom b a}
   Inverses f g  has-section f
inverses→to-has-section {g = g} inv .section = g
inverses→to-has-section inv .is-section = Inverses.invl inv

inverses→from-has-section
  :  {f : Hom a b} {g : Hom b a}
   Inverses f g  has-section g
inverses→from-has-section {f = f} inv .section = f
inverses→from-has-section inv .is-section = Inverses.invr inv

inverses→to-has-retract
  :  {f : Hom a b} {g : Hom b a}
   Inverses f g  has-retract f
inverses→to-has-retract {g = g} inv .retract = g
inverses→to-has-retract inv .is-retract = Inverses.invr inv

inverses→from-has-retract
  :  {f : Hom a b} {g : Hom b a}
   Inverses f g  has-retract g
inverses→from-has-retract {f = f} inv .retract = f
inverses→from-has-retract inv .is-retract = Inverses.invl inv

Using our lemmas about section/retraction pairs from before, we can show that if is a monic retract, then is an iso.

retract-of+monic→inverses
  :  {a b} {s : Hom b a} {r : Hom a b}
   r retract-of s
   is-monic r
   Inverses r s
retract-of+monic→inverses ret monic .invl = ret
retract-of+monic→inverses ret monic .invr =
  retract-of+monic→section-of ret monic

We also have a dual result for sections and epis.

section-of+epic→inverses
  :  {a b} {s : Hom b a} {r : Hom a b}
   s retract-of r
   is-epic r
   Inverses r s
section-of+epic→inverses sect epic .invl =
  section-of+epic→retract-of sect epic
section-of+epic→inverses sect epic .invr = sect

In fact, the mere existence of a retract of an epimorphism suffices to show that is invertible, as invertibility itself is a proposition. Put another way, every morphism that is both a split mono and an epi is invertible.

split-monic+epic→invertible
  : is-split-monic f
   is-epic f
   is-invertible f
split-monic+epic→invertible f-split-monic f-epic =
  ∥-∥-rec is-invertible-is-prop
     r  has-retract+epic→invertible r f-epic)
    f-split-monic

A dual result holds for morphisms that are simultaneously split epic and monic.

split-epic+monic→invertible
  : is-split-epic f
   is-monic f
   is-invertible f

Hom-sets between isomorphic objects are equivalent. Crucially, this allows us to use univalence to transport properties between hom-sets.

iso→hom-equiv
  :  {a a' b b'}  a  a'  b  b'
   Hom a b  Hom a' b'
iso→hom-equiv f g = Iso→Equiv $
   h  g .to  h  f .from) ,
  iso  h  g .from  h  f .to )
     h 
      g .to  (g .from  h  f .to)  f .from   ≡⟨ cat! C 
      (g .to  g .from)  h  (f .to  f .from) ≡⟨ ap₂  l r  l  h  r) (g .invl) (f .invl) 
      id  h  id                               ≡⟨ cat! C 
      h )
     h 
      g .from  (g .to  h  f .from)  f .to   ≡⟨ cat! C 
      (g .from  g .to)  h  (f .from  f .to) ≡⟨ ap₂  l r  l  h  r) (g .invr) (f .invr) 
      id  h  id                               ≡⟨ cat! C 
      h )

If is invertible, then both pre and post-composition with are equivalences.

invertible-precomp-equiv
  :  {a b c} {f : Hom a b}
   is-invertible f
   is-equiv {A = Hom b c} (_∘ f)
invertible-precomp-equiv {f = f} f-inv = is-iso→is-equiv $
  iso  h  h  f-inv.inv)
     h  sym (assoc _ _ _) ·· ap (h ∘_) f-inv.invr ·· idr h)
     h  sym (assoc _ _ _) ·· ap (h ∘_) f-inv.invl ·· idr h)
  where module f-inv = is-invertible f-inv

invertible-postcomp-equiv
  :  {a b c} {f : Hom b c}
   is-invertible f
   is-equiv {A = Hom a b} (f ∘_)
invertible-postcomp-equiv {f = f} f-inv = is-iso→is-equiv $
  iso  h  f-inv.inv  h)
     h  assoc _ _ _ ·· ap (_∘ h) f-inv.invl ·· idl h)
     h  assoc _ _ _ ·· ap (_∘ h) f-inv.invr ·· idl h)
  where module f-inv = is-invertible f-inv