module Cat.Morphism {o h} (C : Precategory o h) where
Morphismsπ
This module defines the three most important classes of morphisms that can be found in a category: monomorphisms, epimorphisms, and isomorphisms.
Monosπ
A morphism is said to be monic when it is left-cancellable. A monomorphism from to written is a monic morphism.
is-monic : Hom a b β Type _ is-monic {a = a} f = β {c} β (g h : Hom c a) β f β g β‘ f β h β g β‘ h is-monic-is-prop : β {a b} (f : Hom a b) β is-prop (is-monic f) is-monic-is-prop f x y i {c} g h p = Hom-set _ _ _ _ (x g h p) (y g h p) i record _βͺ_ (a b : Ob) : Type (o β h) where constructor make-mono field mor : Hom a b monic : is-monic mor open _βͺ_ public
Conversely, a morphism is said to be epic when it is right-cancellable. An epimorphism from to written is an epic morphism.
Episπ
is-epic : Hom a b β Type _ is-epic {b = b} f = β {c} β (g h : Hom b c) β g β f β‘ h β f β g β‘ h is-epic-is-prop : β {a b} (f : Hom a b) β is-prop (is-epic f) is-epic-is-prop f x y i {c} g h p = Hom-set _ _ _ _ (x g h p) (y g h p) i record _β _ (a b : Ob) : Type (o β h) where constructor make-epi field mor : Hom a b epic : is-epic mor open _β _ public
The identity morphism is monic and epic.
id-monic : β {a} β is-monic (id {a}) id-monic g h p = sym (idl _) Β·Β· p Β·Β· idl _ id-epic : β {a} β is-epic (id {a}) id-epic g h p = sym (idr _) Β·Β· p Β·Β· idr _
Both monos and epis are closed under composition.
monic-β : β {a b c} {f : Hom b c} {g : Hom a b} β is-monic f β is-monic g β is-monic (f β g) monic-β fm gm a b Ξ± = gm _ _ (fm _ _ (assoc _ _ _ Β·Β· Ξ± Β·Β· sym (assoc _ _ _))) epic-β : β {a b c} {f : Hom b c} {g : Hom a b} β is-epic f β is-epic g β is-epic (f β g) epic-β fe ge a b Ξ± = fe _ _ (ge _ _ (sym (assoc _ _ _) Β·Β· Ξ± Β·Β· (assoc _ _ _))) _βMono_ : β {a b c} β b βͺ c β a βͺ b β a βͺ c (f βMono g) .mor = f .mor β g .mor (f βMono g) .monic = monic-β (f .monic) (g .monic) _βEpi_ : β {a b c} β b β c β a β b β a β c (f βEpi g) .mor = f .mor β g .mor (f βEpi g) .epic = epic-β (f .epic) (g .epic)
If is monic, then must also be monic.
monic-cancell : β {a b c} {f : Hom b c} {g : Hom a b} β is-monic (f β g) β is-monic g monic-cancell {f = f} fg-monic h h' p = fg-monic h h' $ sym (assoc _ _ _) Β·Β· ap (f β_) p Β·Β· assoc _ _ _
Dually, if is epic, then must also be epic.
epic-cancelr : β {a b c} {f : Hom b c} {g : Hom a b} β is-epic (f β g) β is-epic f epic-cancelr {g = g} fg-epic h h' p = fg-epic h h' $ assoc _ _ _ Β·Β· ap (_β g) p Β·Β· sym (assoc _ _ _)
Postcomposition with a mono is an embedding.
monic-postcomp-embedding : β {a b c} {f : Hom b c} β is-monic f β is-embedding {A = Hom a b} (f β_) monic-postcomp-embedding monic = injectiveβis-embedding (Hom-set _ _) _ (monic _ _)
Likewise, precomposition with an epi is an embedding.
epic-precomp-embedding : β {a b c} {f : Hom a b} β is-epic f β is-embedding {A = Hom b c} (_β f) epic-precomp-embedding epic = injectiveβis-embedding (Hom-set _ _) _ (epic _ _)
subst-is-monic : β {a b} {f g : Hom a b} β f β‘ g β is-monic f β is-monic g subst-is-monic f=g f-monic h i p = f-monic h i (ap (_β h) f=g Β·Β· p Β·Β· ap (_β i) (sym f=g)) subst-is-epic : β {a b} {f g : Hom a b} β f β‘ g β is-epic f β is-epic g subst-is-epic f=g f-epic h i p = f-epic h i (ap (h β_) f=g Β·Β· p Β·Β· ap (i β_) (sym f=g))
Sectionsπ
A morphism is a section of another morphism when The intuition for this name is that picks out a cross-section of from For instance, could map animals to their species; a section of this map would have to pick out a canonical representative of each species from the set of all animals.
_section-of_ : (s : Hom b a) (r : Hom a b) β Type _ s section-of r = r β s β‘ id section-of-is-prop : β {s : Hom b a} {r : Hom a b} β is-prop (s section-of r) section-of-is-prop = Hom-set _ _ _ _ record has-section (r : Hom a b) : Type h where constructor make-section field section : Hom b a is-section : section section-of r open has-section public
The identity map has a section (namely, itself), and the composite of maps with sections also has a section.
id-has-section : β {a} β has-section (id {a}) id-has-section .section = id id-has-section .is-section = idl _ section-of-β : β {a b c} {f : Hom c b} {g : Hom b c} {h : Hom b a} {i : Hom a b} β f section-of g β h section-of i β (h β f) section-of (g β i) section-of-β {f = f} {g = g} {h = h} {i = i} fg-sect hi-sect = (g β i) β h β f β‘β¨ cat! C β©β‘ g β (i β h) β f β‘β¨ ap (Ξ» Ο β g β Ο β f) hi-sect β©β‘ g β id β f β‘β¨ ap (g β_) (idl _) β©β‘ g β f β‘β¨ fg-sect β©β‘ id β section-β : β {a b c} {f : Hom b c} {g : Hom a b} β has-section f β has-section g β has-section (f β g) section-β f-sect g-sect .section = g-sect .section β f-sect .section section-β {f = f} {g = g} f-sect g-sect .is-section = section-of-β (f-sect .is-section) (g-sect .is-section)
Moreover, if has a section, then so does
section-cancell : β {a b c} {f : Hom b c} {g : Hom a b} β has-section (f β g) β has-section f section-cancell {g = g} s .section = g β s .section section-cancell {g = g} s .is-section = assoc _ _ _ β s .is-section
If has a section, then is epic.
has-sectionβepic : β {a b} {f : Hom a b} β has-section f β is-epic f has-sectionβepic {f = f} f-sect g h p = g β‘Λβ¨ idr _ β©β‘Λ g β id β‘Λβ¨ ap (g β_) (f-sect .is-section) β©β‘Λ g β f β f-sect .section β‘β¨ assoc _ _ _ β©β‘ (g β f) β f-sect .section β‘β¨ ap (_β f-sect .section) p β©β‘ (h β f) β f-sect .section β‘Λβ¨ assoc _ _ _ β©β‘Λ h β f β f-sect .section β‘β¨ ap (h β_) (f-sect .is-section) β©β‘ h β id β‘β¨ idr _ β©β‘ h β
subst-section : β {a b} {f g : Hom a b} β f β‘ g β has-section f β has-section g subst-section p s .section = s .section subst-section p s .is-section = apβ _β_ (sym p) refl β s .is-section
Retractsπ
A morphism is a retract of another morphism when Note that this is the same equation involved in the definition of a section; retracts and sections always come in pairs. If sections solve a sort of βcuration problemβ where we are asked to pick out canonical representatives, then retracts solve a sort of βclassification problemβ.
_retract-of_ : (r : Hom a b) (s : Hom b a) β Type _ r retract-of s = r β s β‘ id retract-of-is-prop : β {s : Hom b a} {r : Hom a b} β is-prop (r retract-of s) retract-of-is-prop = Hom-set _ _ _ _ record has-retract (s : Hom b a) : Type h where constructor make-retract field retract : Hom a b is-retract : retract retract-of s open has-retract public
The identity map has a retract (namely, itself), and the composite of maps with retracts also has a retract.
id-has-retract : β {a} β has-retract (id {a}) id-has-retract .retract = id id-has-retract .is-retract = idl _ retract-of-β : β {a b c} {f : Hom c b} {g : Hom b c} {h : Hom b a} {i : Hom a b} β f retract-of g β h retract-of i β (h β f) retract-of (g β i) retract-of-β fg-ret hi-ret = section-of-β hi-ret fg-ret retract-β : β {a b c} {f : Hom b c} {g : Hom a b} β has-retract f β has-retract g β has-retract (f β g) retract-β f-ret g-ret .retract = g-ret .retract β f-ret .retract retract-β f-ret g-ret .is-retract = retract-of-β (f-ret .is-retract) (g-ret .is-retract)
If has a retract, then so does
retract-cancelr : β {a b c} {f : Hom b c} {g : Hom a b} β has-retract (f β g) β has-retract g retract-cancelr {f = f} r .retract = r .retract β f retract-cancelr {f = f} r .is-retract = sym (assoc _ _ _) β r .is-retract
If has a retract, then is monic.
has-retractβmonic : β {a b} {f : Hom a b} β has-retract f β is-monic f has-retractβmonic {f = f} f-ret g h p = g β‘Λβ¨ idl _ β©β‘Λ id β g β‘Λβ¨ ap (_β g) (f-ret .is-retract) β©β‘Λ (f-ret .retract β f) β g β‘Λβ¨ assoc _ _ _ β©β‘Λ f-ret .retract β (f β g) β‘β¨ ap (f-ret .retract β_) p β©β‘ f-ret .retract β f β h β‘β¨ assoc _ _ _ β©β‘ (f-ret .retract β f) β h β‘β¨ ap (_β h) (f-ret .is-retract) β©β‘ id β h β‘β¨ idl _ β©β‘ h β
A section that is also epic is a retract.
section-of+epicβretract-of : β {a b} {s : Hom b a} {r : Hom a b} β s section-of r β is-epic s β s retract-of r section-of+epicβretract-of {s = s} {r = r} sect epic = epic (s β r) id $ (s β r) β s β‘Λβ¨ assoc s r s β©β‘Λ s β (r β s) β‘β¨ ap (s β_) sect β©β‘ s β id β‘β¨ idr _ β©β‘ s β‘Λβ¨ idl _ β©β‘Λ id β s β
Dually, a retract that is also monic is a section.
retract-of+monicβsection-of : β {a b} {s : Hom b a} {r : Hom a b} β r retract-of s β is-monic r β r section-of s retract-of+monicβsection-of {s = s} {r = r} ret monic = monic (s β r) id $ r β s β r β‘β¨ assoc r s r β©β‘ (r β s) β r β‘β¨ ap (_β r) ret β©β‘ id β r β‘β¨ idl _ β©β‘ r β‘Λβ¨ idr _ β©β‘Λ r β id β
has-retract+epicβhas-section : β {a b} {f : Hom a b} β has-retract f β is-epic f β has-section f has-retract+epicβhas-section ret epic .section = ret .retract has-retract+epicβhas-section ret epic .is-section = section-of+epicβretract-of (ret .is-retract) epic has-section+monicβhas-retract : β {a b} {f : Hom a b} β has-section f β is-monic f β has-retract f has-section+monicβhas-retract sect monic .retract = sect .section has-section+monicβhas-retract sect monic .is-retract = retract-of+monicβsection-of (sect .is-section) monic
Split monomorphismsπ
A morphism is a split monomorphism if it merely has a retract.
is-split-monic : Hom a b β Type _ is-split-monic f = β₯ has-retract f β₯
Every split mono is a mono, as being monic is a proposition.
split-monicβmono : is-split-monic f β is-monic f split-monicβmono = rec! has-retractβmonic
Split epimorphismsπ
Dually, a morphism is a split epimorphism if it merely has a section.
is-split-epic : Hom a b β Type _ is-split-epic f = β₯ has-section f β₯
Like split monos, every split epimorphism is an epimorphism.
split-epicβepic : is-split-epic f β is-epic f split-epicβepic = rec! has-sectionβepic
Isosπ
Maps and are inverses when we have and both equal to the identity. A map is invertible (or is an isomorphism) when there exists a for which and are inverses. An isomorphism is a choice of map together with a specified inverse.
record Inverses (f : Hom a b) (g : Hom b a) : Type h where field invl : f β g β‘ id invr : g β f β‘ id open Inverses record is-invertible (f : Hom a b) : Type h where field inv : Hom b a inverses : Inverses f inv open Inverses inverses public op : is-invertible inv op .inv = f op .inverses .Inverses.invl = invr inverses op .inverses .Inverses.invr = invl inverses record _β _ (a b : Ob) : Type h where field to : Hom a b from : Hom b a inverses : Inverses to from open Inverses inverses public open _β _ public
A given map is invertible in at most one way: If you have with two inverses and then not only are equal, but the witnesses of these equalities are irrelevant.
Inverses-are-prop : β {f : Hom a b} {g : Hom b a} β is-prop (Inverses f g) Inverses-are-prop x y i .Inverses.invl = Hom-set _ _ _ _ (x .invl) (y .invl) i Inverses-are-prop x y i .Inverses.invr = Hom-set _ _ _ _ (x .invr) (y .invr) i is-invertible-is-prop : β {f : Hom a b} β is-prop (is-invertible f) is-invertible-is-prop {a = a} {b = b} {f = f} g h = p where module g = is-invertible g module h = is-invertible h gβ‘h : g.inv β‘ h.inv gβ‘h = g.inv β‘β¨ sym (idr _) β apβ _β_ refl (sym h.invl) β©β‘ g.inv β f β h.inv β‘β¨ assoc _ _ _ Β·Β· apβ _β_ g.invr refl Β·Β· idl _ β©β‘ h.inv β p : g β‘ h p i .is-invertible.inv = gβ‘h i p i .is-invertible.inverses = is-propβpathp (Ξ» i β Inverses-are-prop {g = gβ‘h i}) g.inverses h.inverses i
We note that the identity morphism is always iso, and that isos compose:
id-invertible : β {a} β is-invertible (id {a}) id-invertible .is-invertible.inv = id id-invertible .is-invertible.inverses .invl = idl id id-invertible .is-invertible.inverses .invr = idl id id-iso : a β a id-iso .to = id id-iso .from = id id-iso .inverses .invl = idl id id-iso .inverses .invr = idl id Isomorphism = _β _ Inverses-β : {a b c : Ob} {f : Hom b c} {fβ»ΒΉ : Hom c b} {g : Hom a b} {gβ»ΒΉ : Hom b a} β Inverses f fβ»ΒΉ β Inverses g gβ»ΒΉ β Inverses (f β g) (gβ»ΒΉ β fβ»ΒΉ) Inverses-β {f = f} {fβ»ΒΉ} {g} {gβ»ΒΉ} finv ginv = record { invl = l ; invr = r } where module finv = Inverses finv module ginv = Inverses ginv abstract l : (f β g) β gβ»ΒΉ β fβ»ΒΉ β‘ id l = (f β g) β gβ»ΒΉ β fβ»ΒΉ β‘β¨ cat! C β©β‘ f β (g β gβ»ΒΉ) β fβ»ΒΉ β‘β¨ (Ξ» i β f β ginv.invl i β fβ»ΒΉ) β©β‘ f β id β fβ»ΒΉ β‘β¨ cat! C β©β‘ f β fβ»ΒΉ β‘β¨ finv.invl β©β‘ id β r : (gβ»ΒΉ β fβ»ΒΉ) β f β g β‘ id r = (gβ»ΒΉ β fβ»ΒΉ) β f β g β‘β¨ cat! C β©β‘ gβ»ΒΉ β (fβ»ΒΉ β f) β g β‘β¨ (Ξ» i β gβ»ΒΉ β finv.invr i β g) β©β‘ gβ»ΒΉ β id β g β‘β¨ cat! C β©β‘ gβ»ΒΉ β g β‘β¨ ginv.invr β©β‘ id β _βIso_ : β {a b c : Ob} β b β c β a β b β a β c (f βIso g) .to = f .to β g .to (f βIso g) .from = g .from β f .from (f βIso g) .inverses = Inverses-β (f .inverses) (g .inverses) _βIso_ : β {a b c : Ob} β a β b β b β c β a β c f βIso g = g βIso f infixr 40 _βIso_ _βIso_ infixr 41 _Isoβ»ΒΉ invertible-β : β {f : Hom b c} {g : Hom a b} β is-invertible f β is-invertible g β is-invertible (f β g) invertible-β f-inv g-inv = record { inv = g-inv.inv β f-inv.inv ; inverses = Inverses-β f-inv.inverses g-inv.inverses } where module f-inv = is-invertible f-inv module g-inv = is-invertible g-inv _invertibleβ»ΒΉ : β {f : Hom a b} β (f-inv : is-invertible f) β is-invertible (is-invertible.inv f-inv) _invertibleβ»ΒΉ {f = f} f-inv .is-invertible.inv = f _invertibleβ»ΒΉ f-inv .is-invertible.inverses .invl = is-invertible.invr f-inv _invertibleβ»ΒΉ f-inv .is-invertible.inverses .invr = is-invertible.invl f-inv _Isoβ»ΒΉ : a β b β b β a (f Isoβ»ΒΉ) .to = f .from (f Isoβ»ΒΉ) .from = f .to (f Isoβ»ΒΉ) .inverses .invl = f .inverses .invr (f Isoβ»ΒΉ) .inverses .invr = f .inverses .invl
make-inverses : {f : Hom a b} {g : Hom b a} β f β g β‘ id β g β f β‘ id β Inverses f g make-inverses p q .invl = p make-inverses p q .invr = q make-invertible : {f : Hom a b} β (g : Hom b a) β f β g β‘ id β g β f β‘ id β is-invertible f make-invertible g p q .is-invertible.inv = g make-invertible g p q .is-invertible.inverses .invl = p make-invertible g p q .is-invertible.inverses .invr = q make-iso : (f : Hom a b) (g : Hom b a) β f β g β‘ id β g β f β‘ id β a β b make-iso f g p q ._β _.to = f make-iso f g p q ._β _.from = g make-iso f g p q ._β _.inverses .Inverses.invl = p make-iso f g p q ._β _.inverses .Inverses.invr = q inversesβinvertible : β {f : Hom a b} {g : Hom b a} β Inverses f g β is-invertible f inversesβinvertible x .is-invertible.inv = _ inversesβinvertible x .is-invertible.inverses = x invertibleβiso : (f : Hom a b) β is-invertible f β a β b invertibleβiso f x = record { to = f ; from = x .is-invertible.inv ; inverses = x .is-invertible.inverses } is-invertible-inverse : {f : Hom a b} (g : is-invertible f) β is-invertible (g .is-invertible.inv) is-invertible-inverse g = record { inv = _ ; inverses = record { invl = invr g ; invr = invl g } } where open Inverses (g .is-invertible.inverses) isoβinvertible : (i : a β b) β is-invertible (i ._β _.to) isoβinvertible i = record { inv = i ._β _.from ; inverses = i ._β _.inverses } private β -pathp-internal : (p : a β‘ c) (q : b β‘ d) β {f : a β b} {g : c β d} β PathP (Ξ» i β Hom (p i) (q i)) (f ._β _.to) (g ._β _.to) β PathP (Ξ» i β Hom (q i) (p i)) (f ._β _.from) (g ._β _.from) β PathP (Ξ» i β p i β q i) f g β -pathp-internal p q r s i .to = r i β -pathp-internal p q r s i .from = s i β -pathp-internal p q {f} {g} r s i .inverses = is-propβpathp (Ξ» j β Inverses-are-prop {f = r j} {g = s j}) (f .inverses) (g .inverses) i abstract inverse-unique : {x y : Ob} (p : x β‘ y) {b d : Ob} (q : b β‘ d) (f : x β b) (g : y β d) β PathP (Ξ» i β Hom (p i) (q i)) (f .to) (g .to) β PathP (Ξ» i β Hom (q i) (p i)) (f .from) (g .from) inverse-unique = J' (Ξ» a c p β β {b d} (q : b β‘ d) (f : a β b) (g : c β d) β PathP (Ξ» i β Hom (p i) (q i)) (f .to) (g .to) β PathP (Ξ» i β Hom (q i) (p i)) (f .from) (g .from)) Ξ» x β J' (Ξ» b d q β (f : x β b) (g : x β d) β PathP (Ξ» i β Hom x (q i)) (f .to) (g .to) β PathP (Ξ» i β Hom (q i) x) (f .from) (g .from)) Ξ» y f g p β f .from β‘Λβ¨ ap (f .from β_) (g .invl) β idr _ β©β‘Λ f .from β g .to β g .from β‘β¨ assoc _ _ _ β©β‘ (f .from β g .to) β g .from β‘β¨ ap (_β g .from) (ap (f .from β_) (sym p) β f .invr) β idl _ β©β‘ g .from β β -pathp : (p : a β‘ c) (q : b β‘ d) {f : a β b} {g : c β d} β PathP (Ξ» i β Hom (p i) (q i)) (f ._β _.to) (g ._β _.to) β PathP (Ξ» i β p i β q i) f g β -pathp p q {f = f} {g = g} r = β -pathp-internal p q r (inverse-unique p q f g r) β -pathp-from : (p : a β‘ c) (q : b β‘ d) {f : a β b} {g : c β d} β PathP (Ξ» i β Hom (q i) (p i)) (f ._β _.from) (g ._β _.from) β PathP (Ξ» i β p i β q i) f g β -pathp-from p q {f = f} {g = g} r = β -pathp-internal p q (inverse-unique q p (f Isoβ»ΒΉ) (g Isoβ»ΒΉ) r) r β -path : {f g : a β b} β f ._β _.to β‘ g ._β _.to β f β‘ g β -path = β -pathp refl refl β -path-from : {f g : a β b} β f ._β _.from β‘ g ._β _.from β f β‘ g β -path-from = β -pathp-from refl refl β -is-contr : (β {a b} β is-contr (Hom a b)) β is-contr (a β b) β -is-contr hom-contr .centre = make-iso (hom-contr .centre) (hom-contr .centre) (is-contrβis-prop hom-contr _ _) (is-contrβis-prop hom-contr _ _) β -is-contr hom-contr .paths f = β -path (hom-contr .paths (f .to)) β -is-prop : (β {a b} β is-prop (Hom a b)) β is-prop (a β b) β -is-prop hom-prop f g = β -path (hom-prop (f .to) (g .to)) βͺ-pathp : {a : I β Ob} {b : I β Ob} {f : a i0 βͺ b i0} {g : a i1 βͺ b i1} β PathP (Ξ» i β Hom (a i) (b i)) (f .mor) (g .mor) β PathP (Ξ» i β a i βͺ b i) f g βͺ-pathp {a = a} {b} {f} {g} pa = go where go : PathP (Ξ» i β a i βͺ b i) f g go i .mor = pa i go i .monic {c = c} = is-propβpathp (Ξ» i β Ξ -is-hlevel {A = Hom c (a i)} 1 Ξ» g β Ξ -is-hlevel {A = Hom c (a i)} 1 Ξ» h β fun-is-hlevel {A = pa i β g β‘ pa i β h} 1 (Hom-set c (a i) g h)) (f .monic) (g .monic) i β -pathp : {a : I β Ob} {b : I β Ob} {f : a i0 β b i0} {g : a i1 β b i1} β PathP (Ξ» i β Hom (a i) (b i)) (f .mor) (g .mor) β PathP (Ξ» i β a i β b i) f g β -pathp {a = a} {b} {f} {g} pa = go where go : PathP (Ξ» i β a i β b i) f g go i .mor = pa i go i .epic {c = c} = is-propβpathp (Ξ» i β Ξ -is-hlevel {A = Hom (b i) c} 1 Ξ» g β Ξ -is-hlevel {A = Hom (b i) c} 1 Ξ» h β fun-is-hlevel {A = g β pa i β‘ h β pa i} 1 (Hom-set (b i) c g h)) (f .epic) (g .epic) i subst-is-invertible : β {x y} {f g : Hom x y} β f β‘ g β is-invertible f β is-invertible g subst-is-invertible f=g f-inv = make-invertible f.inv (ap (_β f.inv) (sym f=g) β f.invl) (ap (f.inv β_) (sym f=g) β f.invr) where module f = is-invertible f-inv
Isomorphisms enjoy a 2-out-of-3 property: if any 2 of and are isomorphisms, then so is the third.
inverses-cancell : β {f : Hom b c} {g : Hom a b} {gβ»ΒΉ : Hom b a} {fgβ»ΒΉ : Hom c a} β Inverses g gβ»ΒΉ β Inverses (f β g) fgβ»ΒΉ β Inverses f (g β fgβ»ΒΉ) inverses-cancelr : β {f : Hom b c} {fβ»ΒΉ : Hom c b} {g : Hom a b} {fgβ»ΒΉ : Hom c a} β Inverses f fβ»ΒΉ β Inverses (f β g) fgβ»ΒΉ β Inverses g (fgβ»ΒΉ β f) invertible-cancell : β {f : Hom b c} {g : Hom a b} β is-invertible g β is-invertible (f β g) β is-invertible f invertible-cancelr : β {f : Hom b c} {g : Hom a b} β is-invertible f β is-invertible (f β g) β is-invertible g
We are early into our bootstrapping process for category theory, so the proofs of these lemmas are quite low-level, and thus omitted.
inverses-cancell g-inv fg-inv .invl = assoc _ _ _ β fg-inv .invl inverses-cancell g-inv fg-inv .invr = sym (idr _) β apβ _β_ refl (sym (g-inv .invl)) β assoc _ _ _ β apβ _β_ (sym (assoc _ _ _) β sym (assoc _ _ _) β apβ _β_ refl (fg-inv .invr) β idr _) refl β g-inv .invl inverses-cancelr f-inv fg-inv .invl = sym (idl _) β apβ _β_ (sym (f-inv .invr)) refl β sym (assoc _ _ _) β apβ _β_ refl (assoc _ _ _ β assoc _ _ _ β apβ _β_ (fg-inv .invl) refl β idl _) β f-inv .invr inverses-cancelr f-inv fg-inv .invr = sym (assoc _ _ _) β fg-inv .invr invertible-cancell g-inv fg-inv = inversesβinvertible $ inverses-cancell (g-inv .is-invertible.inverses) (fg-inv .is-invertible.inverses) invertible-cancelr f-inv fg-inv = inversesβinvertible $ inverses-cancelr (f-inv .is-invertible.inverses) (fg-inv .is-invertible.inverses)
We also note that invertible morphisms are both epic and monic.
invertibleβmonic : is-invertible f β is-monic f invertibleβmonic {f = f} invert g h p = g β‘Λβ¨ idl g β©β‘Λ id β g β‘Λβ¨ ap (_β g) (is-invertible.invr invert) β©β‘Λ (inv β f) β g β‘Λβ¨ assoc inv f g β©β‘Λ inv β (f β g) β‘β¨ ap (inv β_) p β©β‘ inv β (f β h) β‘β¨ assoc inv f h β©β‘ (inv β f) β h β‘β¨ ap (_β h) (is-invertible.invr invert) β©β‘ id β h β‘β¨ idl h β©β‘ h β where open is-invertible invert invertibleβepic : is-invertible f β is-epic f invertibleβepic {f = f} invert g h p = g β‘Λβ¨ idr g β©β‘Λ g β id β‘Λβ¨ ap (g β_) (is-invertible.invl invert) β©β‘Λ g β (f β inv) β‘β¨ assoc g f inv β©β‘ (g β f) β inv β‘β¨ ap (_β inv) p β©β‘ (h β f) β inv β‘Λβ¨ assoc h f inv β©β‘Λ h β (f β inv) β‘β¨ ap (h β_) (is-invertible.invl invert) β©β‘ h β id β‘β¨ idr h β©β‘ h β where open is-invertible invert isoβmonic : (f : a β b) β is-monic (f .to) isoβmonic f = invertibleβmonic (isoβinvertible f) isoβepic : (f : a β b) β is-epic (f .to) isoβepic f = invertibleβepic (isoβinvertible f)
Furthermore, isomorphisms also yield section/retraction pairs.
inversesβto-has-section : β {f : Hom a b} {g : Hom b a} β Inverses f g β has-section f inversesβto-has-section {g = g} inv .section = g inversesβto-has-section inv .is-section = Inverses.invl inv inversesβfrom-has-section : β {f : Hom a b} {g : Hom b a} β Inverses f g β has-section g inversesβfrom-has-section {f = f} inv .section = f inversesβfrom-has-section inv .is-section = Inverses.invr inv inversesβto-has-retract : β {f : Hom a b} {g : Hom b a} β Inverses f g β has-retract f inversesβto-has-retract {g = g} inv .retract = g inversesβto-has-retract inv .is-retract = Inverses.invr inv inversesβfrom-has-retract : β {f : Hom a b} {g : Hom b a} β Inverses f g β has-retract g inversesβfrom-has-retract {f = f} inv .retract = f inversesβfrom-has-retract inv .is-retract = Inverses.invl inv
invertibleβto-has-section : is-invertible f β has-section f invertibleβto-has-section f-inv .section = is-invertible.inv f-inv invertibleβto-has-section f-inv .is-section = is-invertible.invl f-inv invertibleβto-has-retract : is-invertible f β has-retract f invertibleβto-has-retract f-inv .retract = is-invertible.inv f-inv invertibleβto-has-retract f-inv .is-retract = is-invertible.invr f-inv invertibleβto-split-monic : is-invertible f β is-split-monic f invertibleβto-split-monic f-inv = pure (invertibleβto-has-retract f-inv) invertibleβto-split-epic : is-invertible f β is-split-epic f invertibleβto-split-epic f-inv = pure (invertibleβto-has-section f-inv) isoβto-has-section : (f : a β b) β has-section (f .to) isoβto-has-section f .section = f .from isoβto-has-section f .is-section = f .invl isoβfrom-has-section : (f : a β b) β has-section (f .from) isoβfrom-has-section f .section = f .to isoβfrom-has-section f .is-section = f .invr isoβto-has-retract : (f : a β b) β has-retract (f .to) isoβto-has-retract f .retract = f .from isoβto-has-retract f .is-retract = f .invr isoβfrom-has-retract : (f : a β b) β has-retract (f .from) isoβfrom-has-retract f .retract = f .to isoβfrom-has-retract f .is-retract = f .invl
Using our lemmas about section/retraction pairs from before, we can show that if is a monic retract, then is an iso.
retract-of+monicβinverses : β {a b} {s : Hom b a} {r : Hom a b} β r retract-of s β is-monic r β Inverses r s retract-of+monicβinverses ret monic .invl = ret retract-of+monicβinverses ret monic .invr = retract-of+monicβsection-of ret monic
We also have a dual result for sections and epis.
section-of+epicβinverses : β {a b} {s : Hom b a} {r : Hom a b} β s retract-of r β is-epic r β Inverses r s section-of+epicβinverses sect epic .invl = section-of+epicβretract-of sect epic section-of+epicβinverses sect epic .invr = sect
has-retract+epicβinvertible : β {a b} {f : Hom a b} β has-retract f β is-epic f β is-invertible f has-retract+epicβinvertible f-ret epic .is-invertible.inv = f-ret .retract has-retract+epicβinvertible f-ret epic .is-invertible.inverses = section-of+epicβinverses (f-ret .is-retract) epic has-section+monicβinvertible : β {a b} {f : Hom a b} β has-section f β is-monic f β is-invertible f has-section+monicβinvertible f-sect monic .is-invertible.inv = f-sect .section has-section+monicβinvertible f-sect monic .is-invertible.inverses = retract-of+monicβinverses (f-sect .is-section) monic
In fact, the mere existence of a retract of an epimorphism suffices to show that is invertible, as invertibility itself is a proposition. Put another way, every morphism that is both a split mono and an epi is invertible.
split-monic+epicβinvertible : is-split-monic f β is-epic f β is-invertible f split-monic+epicβinvertible f-split-monic f-epic = β₯-β₯-rec is-invertible-is-prop (Ξ» r β has-retract+epicβinvertible r f-epic) f-split-monic
A dual result holds for morphisms that are simultaneously split epic and monic.
split-epic+monicβinvertible : is-split-epic f β is-monic f β is-invertible f
split-epic+monicβinvertible f-split-epic f-monic = β₯-β₯-rec is-invertible-is-prop (Ξ» s β has-section+monicβinvertible s f-monic) f-split-epic
Hom-sets between isomorphic objects are equivalent. Crucially, this allows us to use univalence to transport properties between hom-sets.
isoβhom-equiv : β {a a' b b'} β a β a' β b β b' β Hom a b β Hom a' b' isoβhom-equiv f g = IsoβEquiv $ (Ξ» h β g .to β h β f .from) , iso (Ξ» h β g .from β h β f .to ) (Ξ» h β g .to β (g .from β h β f .to) β f .from β‘β¨ cat! C β©β‘ (g .to β g .from) β h β (f .to β f .from) β‘β¨ apβ (Ξ» l r β l β h β r) (g .invl) (f .invl) β©β‘ id β h β id β‘β¨ cat! C β©β‘ h β) (Ξ» h β g .from β (g .to β h β f .from) β f .to β‘β¨ cat! C β©β‘ (g .from β g .to) β h β (f .from β f .to) β‘β¨ apβ (Ξ» l r β l β h β r) (g .invr) (f .invr) β©β‘ id β h β id β‘β¨ cat! C β©β‘ h β)
-- Optimized versions of IsoβHom-equiv which yield nicer results -- if only one isomorphism is needed. dom-isoβhom-equiv : β {a a' b} β a β a' β Hom a b β Hom a' b dom-isoβhom-equiv f = IsoβEquiv $ (Ξ» h β h β f .from) , iso (Ξ» h β h β f .to ) (Ξ» h β (h β f .to) β f .from β‘β¨ sym (assoc _ _ _) β©β‘ h β (f .to β f .from) β‘β¨ ap (h β_) (f .invl) β©β‘ h β id β‘β¨ idr _ β©β‘ h β) (Ξ» h β (h β f .from) β f .to β‘β¨ sym (assoc _ _ _) β©β‘ h β (f .from β f .to) β‘β¨ ap (h β_) (f .invr) β©β‘ h β id β‘β¨ idr _ β©β‘ h β) cod-isoβHom-equiv : β {a b b'} β b β b' β Hom a b β Hom a b' cod-isoβHom-equiv f = IsoβEquiv $ (Ξ» h β f .to β h) , iso (Ξ» h β f .from β h) (Ξ» h β f .to β f .from β h β‘β¨ assoc _ _ _ β©β‘ (f .to β f .from) β h β‘β¨ ap (_β h) (f .invl) β©β‘ id β h β‘β¨ idl _ β©β‘ h β) (Ξ» h β f .from β f .to β h β‘β¨ assoc _ _ _ β©β‘ (f .from β f .to) β h β‘β¨ ap (_β h) (f .invr) β©β‘ id β h β‘β¨ idl _ β©β‘ h β)
If is invertible, then both pre and post-composition with are equivalences.
invertible-precomp-equiv : β {a b c} {f : Hom a b} β is-invertible f β is-equiv {A = Hom b c} (_β f) invertible-precomp-equiv {f = f} f-inv = is-isoβis-equiv $ iso (Ξ» h β h β f-inv.inv) (Ξ» h β sym (assoc _ _ _) Β·Β· ap (h β_) f-inv.invr Β·Β· idr h) (Ξ» h β sym (assoc _ _ _) Β·Β· ap (h β_) f-inv.invl Β·Β· idr h) where module f-inv = is-invertible f-inv invertible-postcomp-equiv : β {a b c} {f : Hom b c} β is-invertible f β is-equiv {A = Hom a b} (f β_) invertible-postcomp-equiv {f = f} f-inv = is-isoβis-equiv $ iso (Ξ» h β f-inv.inv β h) (Ξ» h β assoc _ _ _ Β·Β· ap (_β h) f-inv.invl Β·Β· idl h) (Ξ» h β assoc _ _ _ Β·Β· ap (_β h) f-inv.invr Β·Β· idl h) where module f-inv = is-invertible f-inv