module Data.Nat.Base where
Natural numbersπ
The natural numbers are the inductive type generated by zero
and closed
under taking suc
cessors. Thus,
they satisfy the following induction principle, which is familiar:
Nat-elim : β {β} (P : Nat β Type β) β P 0 β ({n : Nat} β P n β P (suc n)) β (n : Nat) β P n Nat-elim P pz ps zero = pz Nat-elim P pz ps (suc n) = ps (Nat-elim P pz ps n) iter : β {β} {A : Type β} β Nat β (A β A) β A β A iter zero f = id iter (suc n) f = f β iter n f
Translating from type theoretic notation to mathematical English, the
type of Nat-elim
says that if a
predicate P
holds of zero
, and the truth
of P(suc n)
follows from P(n)
, then
P
is true for every natural number.
Discretenessπ
An interesting property of the natural numbers, type-theoretically,
is that they are discrete
: given
any pair of natural numbers, there is an algorithm that can tell you
whether or not they are equal. First, observe that we can distinguish
zero from
successor:
zeroβ suc : {n : Nat} β Β¬ zero β‘ suc n zeroβ suc path = subst distinguish path tt where distinguish : Nat β Type distinguish zero = β€ distinguish (suc x) = β₯
The idea behind this proof is that we can write a predicate which is
true
for zero, and false
for any successor. Since
we know that β€
is inhabited (by tt
), we can
transport that along the claimed path to get an inhabitant of β₯
, i.e., a contradiction.
pred : Nat β Nat pred 0 = 0 pred (suc n) = n suc-inj : {x y : Nat} β suc x β‘ suc y β x β‘ y suc-inj = ap pred
Furthermore, observe that the successor
operation is injective, i.e.,
we can βcancelβ it on paths. Putting these together, we get a proof that
equality for the natural numbers is decidable:
Discrete-Nat : Discrete Nat Discrete-Nat {zero} {zero} = yes refl Discrete-Nat {zero} {suc y} = no Ξ» zeroβ‘suc β absurd (zeroβ suc zeroβ‘suc) Discrete-Nat {suc x} {zero} = no Ξ» sucβ‘zero β absurd (sucβ zero sucβ‘zero) Discrete-Nat {suc x} {suc y} with Discrete-Nat {x} {y} ... | yes xβ‘y = yes (ap suc xβ‘y) ... | no Β¬xβ‘y = no Ξ» sucxβ‘sucy β Β¬xβ‘y (suc-inj sucxβ‘sucy)
abstract from-prim-eq : β {x y} β So (x == y) β x β‘ y from-prim-eq {zero} {zero} p = refl from-prim-eq {suc x} {suc y} p = ap suc (from-prim-eq p) from-prim-eq-refl : β {x p} β from-prim-eq {x} {x} p β‘ refl from-prim-eq-refl {zero} = refl from-prim-eq-refl {suc x} = ap (ap suc) (from-prim-eq-refl {x}) {-# REWRITE from-prim-eq-refl #-} to-prim-eq : β {x y} β x β‘ y β So (x == y) to-prim-eq {zero} {zero} p = oh to-prim-eq {zero} {suc y} p = absurd (zeroβ suc p) to-prim-eq {suc x} {zero} p = absurd (sucβ zero p) to-prim-eq {suc x} {suc y} p = to-prim-eq (suc-inj p) instance Discrete-Nat : Discrete Nat Discrete-Nat {x} {y} with oh? (x == y) ... | yes p = yes (from-prim-eq p) ... | no Β¬p = no (Β¬p β to-prim-eq)
Hedbergβs
theorem implies that Nat
is a set, i.e., it only has trivial
paths.
opaque Nat-is-set : is-set Nat Nat-is-set = Discreteβis-set Discrete-Nat instance H-Level-Nat : β {n} β H-Level Nat (2 + n) H-Level-Nat = basic-instance 2 Nat-is-set
Arithmeticπ
Heads up! The arithmetic properties of operations on
the natural numbers are in the module Data.Nat.Properties
.
Agda already comes with definitions for addition and multiplication of natural numbers. They are reproduced below, using different names, for the sake of completeness:
plus : Nat β Nat β Nat plus zero y = y plus (suc x) y = suc (plus x y) times : Nat β Nat β Nat times zero y = zero times (suc x) y = y + times x y
These match up with the built-in definitions of _+_
and _*_
:
plusβ‘+ : plus β‘ _+_ plusβ‘+ i zero y = y plusβ‘+ i (suc x) y = suc (plusβ‘+ i x y) timesβ‘* : times β‘ _*_ timesβ‘* i zero y = zero timesβ‘* i (suc x) y = y + (timesβ‘* i x y)
The exponentiation operator ^
is defined by
recursion on the exponent.
_^_ : Nat β Nat β Nat x ^ zero = 1 x ^ suc y = x * (x ^ y) infixr 10 _^_
Orderingπ
We define the order relation _β€_
on the natural
numbers as an inductive predicate. We could also define the relation by
recursion on the numbers to be compared, but the inductive version has
much better properties when it comes to type inference.
data _β€_ : Nat β Nat β Type where instance 0β€x : β {x} β 0 β€ x sβ€s : β {x y} β x β€ y β suc x β€ suc y
instance sβ€s' : β {x y} β β¦ x β€ y β¦ β suc x β€ suc y sβ€s' β¦ x β¦ = sβ€s x xβ€x : β {x} β x β€ x xβ€x {zero} = 0β€x xβ€x {suc x} = sβ€s xβ€x xβ€sucy : β {x y} β¦ p : x β€ y β¦ β x β€ suc y xβ€sucy {.0} {y} β¦ 0β€x β¦ = 0β€x xβ€sucy {.(suc _)} {.(suc _)} β¦ sβ€s p β¦ = sβ€s (xβ€sucy β¦ p β¦) {-# INCOHERENT xβ€x xβ€sucy #-} β€-peel : β {x y : Nat} β suc x β€ suc y β x β€ y β€-peel (sβ€s p) = p Β¬sucβ€0 : β {x} β suc x β€ 0 β β₯ Β¬sucβ€0 () β€-trans : β {x y z} β x β€ y β y β€ z β x β€ z β€-trans 0β€x 0β€x = 0β€x β€-trans 0β€x (sβ€s q) = 0β€x β€-trans (sβ€s p) (sβ€s q) = sβ€s (β€-trans p q) factorial : Nat β Nat factorial zero = 1 factorial (suc n) = suc n * factorial n Positive : Nat β Type Positive n = 1 β€ n
We define the strict ordering on Nat
as well, re-using the
definition of _β€_
.
_<_ : Nat β Nat β Type m < n = suc m β€ n infix 7 _<_ _β€_
β€-sucr : β {x y : Nat} β x β€ y β x β€ suc y β€-sucr 0β€x = 0β€x β€-sucr (sβ€s p) = sβ€s (β€-sucr p) <-weaken : β {x y} β x < y β x β€ y <-weaken {x} {suc y} p = β€-sucr (β€-peel p)
As an βordering combinatorβ, we can define the maximum of two natural numbers by recursion: The maximum of zero and a successor (on either side) is the successor, and the maximum of successors is the successor of their maximum.
max : Nat β Nat β Nat max zero zero = zero max zero (suc y) = suc y max (suc x) zero = suc x max (suc x) (suc y) = suc (max x y)
Similarly, we can define the minimum of two numbers:
min : Nat β Nat β Nat min zero zero = zero min zero (suc y) = zero min (suc x) zero = zero min (suc x) (suc y) = suc (min x y)