module Homotopy.Space.Circle.Properties where

Fundamental group of the circle🔗

We will now calculate that the first loop space of the circle at the basepoint is a type of integers, i.e. it satisfies the universal property of the integers. First, we generalise the construction of möbius to turn an equivalence on an arbitrary type into a type family over . Transport over this family will give the universal map associated with an equivalence and basepoint

equiv→family : X  X    Type _
equiv→family {X = X} eqv base = X
equiv→family eqv (loop i)     = ua eqv i

We will later need the “action” associated with an equivalence valued at a path with free endpoint Taking recovers a more vanilla notion of “action on ”.

equiv→action :  {y} (e : X  X)  base  y  X  equiv→family e y
equiv→action e p x = subst (equiv→family e) p x

_ : X  X  base  base  X  X
_ = equiv→action {y = base}

The first thing we will do is assume an elimination principle for which will be used in showing uniqueness of the universal map associated to an equivalence We must also equip with an auto-equivalence, which corresponds in some way to taking successors: since loop corresponds to “the number 1”, the equivalence we go with is thus “adding 1”: postcomposition with the loop.

  ΩS¹-elim
    :  {} (P : Path  base base  Type )
     (pr : P refl)
     (pl : P ≃[ ∙-post-equiv loop ] P)
      x  P x

  private
    rotΩS¹ : (base  base)  (base  base)
    rotΩS¹ = ∙-post-equiv {x = base} loop

  ΩS¹-integers : Integers (Path  base base)
  ΩS¹-integers .point   = refl
  ΩS¹-integers .rotate  = rotΩS¹

It is easy to see that transporting the basepoint along the family associated to an automorphism of commutes with our chosen automorphism of modulo a tactic application, it is refl.

  ΩS¹-integers .map-out        x e l = equiv→action e l x
  ΩS¹-integers .map-out-point  x e   = Regularity.precise! refl
  ΩS¹-integers .map-out-rotate x e l = Regularity.precise! refl

The difficult part of the proof is showing that equiv→action is the unique map with these properties. We will show this is the case assuming first that we have an elimination principle for

  ΩS¹-integers .map-out-unique f {p} {r} frefl floop = ΩS¹-elim _
    (Regularity.precise! frefl) $ over-left→over rotΩS¹ λ a 
      (f a  go a)                    ≃⟨ ap-equiv r 
      (r .fst (f a)  r .fst (go a))  ≃⟨ ∙-pre-equiv (floop a) 
      (f (a  loop)  r .fst (go a))  ≃⟨ ∙-post-equiv (Regularity.precise! refl) 
      (f (a  loop)  go (a  loop))  ≃∎
    where
      go : _  _
      go l = equiv→action r l p

Loop induction🔗

We must now show the elimination principle for that was promised above. Note that, while this is a path type, both of the endpoints are fixed (here, to be constructors), so we can not directly use path induction. Instead, we will mimic the construction of induction from initiality, turning our induction methods into a total algebra which can be mapped into universally.

Applying the universal map at then gives us a pair of an index and a proof in If we have a proper initial object, we could then show that the composite which defines is an algebra map so it must be the identity; thus and we have the desired Here, however, we’re trying to show initiality, so we’ll need a hand-crafted coherence.

We note that the induction methods for ΩS¹-elim fit together into a basepoint and auto-equivalence of the type The family associated to this action will be called totl.

  ΩS¹-elim P pr pl l = subst P (pathβ base l) attempt where
    totl :   Type _
    totl = equiv→family (over→total rotΩS¹ pl)

By rotating the basepoint (given by the method we get a value in but its type appears to be way off. Essentially, to show that our attempt landed in the right fibre, we would like to reduce to the case where since there the index is essentially trivially correct.

    attempt : P (subst totl l (refl , pr) .fst)
    attempt = subst totl l (refl , pr) .snd

However, this statement depends critically on being a loop, preventing us from using path induction: if is instead a path then transport takes us to a fibre of totl which is not a sigma type, hence not something we can project from. To generalise this, we must define a fibrewise transformation from totl to the based path space of which, at the basepoint, is the first projection function.

This turns out to be pretty easy: using the helper function ua→ to simplify the coherence condition, we are left with filling a square with the boundary below, which we have by the definition of path composition: it is ∙-filler.

    path :  y  totl y  base  y
    path = S¹-elim fst $ ua→ λ _  ∙-filler _ loop

Now we have a statement which is sufficiently general to prove by path induction: projecting the index using path from the result of applying our universal map, even at an arbitrary based path is the identity function; And, by construction, when this statement reduces to precisely the identification between indices we were looking for.

    pathβ :  y l  path y (subst totl l (refl , pr))  l
    pathβ y = J  y l  path y (subst totl l (refl , pr))  l)
      (transport-refl refl)
ΩS¹≃Int : (base  base)  Int
ΩS¹≃Int = Integers-unique ΩS¹-integers Int-integers

open Equiv ΩS¹≃Int renaming (to to winding ; from to loopⁿ) using () public

It immediately follows from this that the circle is a groupoid, since it is connected and its loop space is a set.

opaque
  S¹-is-groupoid : is-groupoid 
  S¹-is-groupoid = S¹-elim (S¹-elim
    (Equiv→is-hlevel 2 ΩS¹≃Int (hlevel 2)) prop!) prop!

By induction, we can show that this equivalence respects group composition (that is, so that we have a proper isomorphism of groups.

  loopⁿ-+ : (a b : Int)  loopⁿ (a +ℤ b)  loopⁿ a  loopⁿ b
  loopⁿ-+ a = Integers.induction Int-integers
    (ap loopⁿ (+ℤ-zeror a)  sym (∙-idr _))
    λ b 
      loopⁿ (a +ℤ b)  loopⁿ a  loopⁿ b                 ≃⟨ ap (_∙ loop) , equiv→cancellable (∙-post-equiv loop .snd) 
      loopⁿ (a +ℤ b)  loop  (loopⁿ a  loopⁿ b)  loop ≃⟨ ∙-post-equiv (sym (∙-assoc _ _ _)) 
      loopⁿ (a +ℤ b)  loop  loopⁿ a  loopⁿ b  loop   ≃⟨ ∙-post-equiv (ap (loopⁿ a ∙_) (sym (loopⁿ⁺¹ b))) 
      loopⁿ (a +ℤ b)  loop  loopⁿ a  loopⁿ (sucℤ b)   ≃⟨ ∙-pre-equiv (loopⁿ⁺¹ (a +ℤ b)) 
      loopⁿ (sucℤ (a +ℤ b))  loopⁿ a  loopⁿ (sucℤ b)   ≃⟨ ∙-pre-equiv (ap loopⁿ (+ℤ-sucr a b)) 
      loopⁿ (a +ℤ sucℤ b)  loopⁿ a  loopⁿ (sucℤ b)     ≃∎

π₁S¹≅ℤ : π₁Groupoid.π₁ S¹∙ S¹-is-groupoid Groups.≅ 
π₁S¹≅ℤ = total-iso ΩS¹≃Int $
  equiv-hom→inverse-hom {a = } {b = π₁Groupoid.π₁ S¹∙ S¹-is-groupoid}
    (Equiv.inverse ΩS¹≃Int)
    (record { pres-⋆ = loopⁿ-+ })

Furthermore, since the loop space of the circle is a set, we automatically get that all of its higher homotopy groups are trivial.

Ωⁿ⁺²S¹-is-contr :  n  is-contr  Ωⁿ (2 + n) S¹∙ 
Ωⁿ⁺²S¹-is-contr zero = is-prop∙→is-contr (hlevel 1) refl
Ωⁿ⁺²S¹-is-contr (suc n) = Path-is-hlevel 0 (Ωⁿ⁺²S¹-is-contr n)

πₙ₊₂S¹≡0 :  n  πₙ₊₁ (suc n) S¹∙  Zero-group {lzero}
πₙ₊₂S¹≡0 n = ∫-Path
  (Zero-group-is-terminal _ .centre)
  (is-contr→≃ (is-contr→∥-∥₀-is-contr (Ωⁿ⁺²S¹-is-contr n)) (hlevel 0) .snd)