open import 1Lab.HLevel
open import 1Lab.Equiv
open import 1Lab.Path
open import 1Lab.Type

module 1Lab.Type.Sigma where

private variable
ℓ ℓ₁ : Level
A A' X X' Y Y' Z Z' : Type ℓ
B P Q : A → Type ℓ


# Properties of Σ types🔗

This module contains properties of types, not necessarily organised in any way.

## Groupoid structure🔗

The first thing we prove is that paths in sigmas are sigmas of paths. The type signatures make it clearer:

Σ-pathp-iso : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁}
{x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)}
→ Iso (Σ[ p ∈ PathP A (x .fst) (y .fst) ]
(PathP (λ i → B i (p i)) (x .snd) (y .snd)))
(PathP (λ i → Σ (A i) (B i)) x y)

Σ-path-iso : {x y : Σ A B}
→ Iso (Σ[ p ∈ x .fst ≡ y .fst ] (subst B p (x .snd) ≡ y .snd))
(x ≡ y)


The first of these, using a dependent path, is easy to prove directly, because paths in cubical type theory automatically inherit the structure of their domain types. The second is a consequence of the first, using the fact that PathPs and paths over a transport are the same.

fst Σ-pathp-iso (p , q) i = p i , q i
is-iso.inv (snd Σ-pathp-iso) p = (λ i → p i .fst) , (λ i → p i .snd)
is-iso.rinv (snd Σ-pathp-iso) x = refl
is-iso.linv (snd Σ-pathp-iso) x = refl

Σ-path-iso {B = B} {x} {y} =
transport (λ i → Iso (Σ[ p ∈ x .fst ≡ y .fst ]
(PathP≡Path (λ j → B (p j)) (x .snd) (y .snd) i))
(x ≡ y))
Σ-pathp-iso


## Closure under equivalences🔗

Univalence automatically implies that every type former respects equivalences. However, this theorem is limited to equivalences between types in the same universe. Thus, we provide Σ-ap-fst, Σ-ap-snd, and Σ-ap, which allows one to perturb a Σ by equivalences across levels:

Σ-ap-snd : ((x : A) → P x ≃ Q x) → Σ A P ≃ Σ A Q
Σ-ap-fst : (e : A ≃ A') → Σ A (B ∘ e .fst) ≃ Σ A' B

Σ-ap : (e : A ≃ A') → ((x : A) → P x ≃ Q (e .fst x)) → Σ A P ≃ Σ A' Q
Σ-ap e e' = Σ-ap-snd e' ∙e Σ-ap-fst e

The proofs of these theorems are not very enlightening, but they are included for completeness.
Σ-ap-snd {A = A} {P = P} {Q = Q} pointwise = Iso→Equiv morp where
pwise : (x : A) → Iso (P x) (Q x)
pwise x = _ , is-equiv→is-iso (pointwise x .snd)

morp : Iso (Σ _ P) (Σ _ Q)
fst morp (i , x) = i , pointwise i .fst x
is-iso.inv (snd morp) (i , x) = i , pwise i .snd .is-iso.inv x
is-iso.rinv (snd morp) (i , x) = ap₂ _,_ refl (pwise i .snd .is-iso.rinv _)
is-iso.linv (snd morp) (i , x) = ap₂ _,_ refl (pwise i .snd .is-iso.linv _)

Σ-ap-fst {A = A} {A' = A'} {B = B} e = intro , isEqIntro
where
intro : Σ _ (B ∘ e .fst) → Σ _ B
intro (a , b) = e .fst a , b

isEqIntro : is-equiv intro
isEqIntro .is-eqv x = contr ctr isCtr where
PB : ∀ {x y} → x ≡ y → B x → B y → Type _
PB p = PathP (λ i → B (p i))

open Σ x renaming (fst to a'; snd to b)
open Σ (e .snd .is-eqv a' .is-contr.centre) renaming (fst to ctrA; snd to α)

ctrB : B (e .fst ctrA)
ctrB = subst B (sym α) b

ctrP : PB α ctrB b
ctrP i = coe1→i (λ i → B (α i)) i b

ctr : fibre intro x
ctr = (ctrA , ctrB) , Σ-pathp α ctrP

isCtr : ∀ y → ctr ≡ y
isCtr ((r , s) , p) = λ i → (a≡r i , b!≡s i) , Σ-pathp (α≡ρ i) (coh i) where
open Σ (Σ-pathp-iso .snd .is-iso.inv p) renaming (fst to ρ; snd to σ)
open Σ (Σ-pathp-iso .snd .is-iso.inv (e .snd .is-eqv a' .is-contr.paths (r , ρ))) renaming (fst to a≡r; snd to α≡ρ)

b!≡s : PB (ap (e .fst) a≡r) ctrB s
b!≡s i = comp (λ k → B (α≡ρ i (~ k))) (∂ i) λ where
k (i = i0) → ctrP (~ k)
k (i = i1) → σ (~ k)
k (k = i0) → b

coh : PathP (λ i → PB (α≡ρ i) (b!≡s i) b) ctrP σ
coh i j = fill (λ k → B (α≡ρ i (~ k))) (∂ i) (~ j) λ where
k (i = i0) → ctrP (~ k)
k (i = i1) → σ (~ k)
k (k = i0) → b

Σ-assoc : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : (x : A) → B x → Type ℓ''}
→ (Σ[ x ∈ A ] Σ[ y ∈ B x ] C x y) ≃ (Σ[ x ∈ Σ _ B ] (C (x .fst) (x .snd)))
Σ-assoc .fst (x , y , z) = (x , y) , z
Σ-assoc .snd .is-eqv y .centre = strict-fibres (λ { ((x , y) , z) → x , y , z}) y .fst
Σ-assoc .snd .is-eqv y .paths = strict-fibres (λ { ((x , y) , z) → x , y , z}) y .snd

Σ-Π-distrib : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : (x : A) → B x → Type ℓ''}
→ ((x : A) → Σ[ y ∈ B x ] C x y)
≃ (Σ[ f ∈ ((x : A) → B x) ] ((x : A) → C x (f x)))
Σ-Π-distrib .fst f = (λ x → f x .fst) , λ x → f x .snd
Σ-Π-distrib .snd .is-eqv y .centre = strict-fibres (λ f x → f .fst x , f .snd x) y .fst
Σ-Π-distrib .snd .is-eqv y .paths = strict-fibres (λ f x → f .fst x , f .snd x) y .snd


## Paths in subtypes🔗

When P is a family of propositions, it is sound to regard Σ[ x ∈ A ] (P x) as a subtype of A. This is because identification in the subtype is characterised uniquely by identification of the first projections:

Σ-prop-path : {B : A → Type ℓ}
→ (∀ x → is-prop (B x))
→ {x y : Σ _ B}
→ (x .fst ≡ y .fst) → x ≡ y
Σ-prop-path bp {x} {y} p i = p i , is-prop→pathp (λ i → bp (p i)) (x .snd) (y .snd) i


The proof that this is an equivalence uses a cubical argument, but the gist of it is that since B is a family of propositions, it really doesn’t matter where we get our equality of B-s from - whether it was from the input, or from Σ≡Path.

Σ-prop-path-is-equiv
: {B : A → Type ℓ}
→ (bp : ∀ x → is-prop (B x))
→ {x y : Σ _ B}
→ is-equiv (Σ-prop-path bp {x} {y})
Σ-prop-path-is-equiv bp {x} {y} = is-iso→is-equiv isom where
isom : is-iso _
isom .is-iso.inv = ap fst
isom .is-iso.linv p = refl


The inverse is the action on paths of the first projection, which lets us conclude x .fst ≡ y .fst from x ≡ y. This is a left inverse to Σ-prop-path on the nose. For the other direction, we have the aforementioned cubical argument:

  isom .is-iso.rinv p i j =
p j .fst , is-prop→pathp (λ k → Path-is-hlevel 1 (bp (p k .fst))
{x = Σ-prop-path bp {x} {y} (ap fst p) k .snd}
{y = p k .snd})
refl refl j i


Since Σ-prop-path is an equivalence, this implies that its inverse, ap fst, is also an equivalence; This is precisely what it means for fst to be an embedding.

There is also a convenient packaging of the previous two definitions into an equivalence:

Σ-prop-path≃ : {B : A → Type ℓ}
→ (∀ x → is-prop (B x))
→ {x y : Σ _ B}
→ (x .fst ≡ y .fst) ≃ (x ≡ y)
Σ-prop-path≃ bp = Σ-prop-path bp , Σ-prop-path-is-equiv bp

Σ-prop-square
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
→ {w x y z : Σ _ B}
→ (∀ x → is-prop (B x))
→ {p : x ≡ w} {q : x ≡ y} {s : w ≡ z} {r : y ≡ z}
→ Square (ap fst p) (ap fst q) (ap fst s) (ap fst r)
→ Square p q s r
Σ-prop-square Bprop sq i j .fst = sq i j
Σ-prop-square Bprop {p} {q} {s} {r} sq i j .snd =
is-prop→squarep (λ i j → Bprop (sq i j))
(ap snd p) (ap snd q) (ap snd s) (ap snd r) i j

Σ-set-square
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
→ {w x y z : Σ _ B}
→ (∀ x → is-set (B x))
→ {p : x ≡ w} {q : x ≡ y} {s : w ≡ z} {r : y ≡ z}
→ Square (ap fst p) (ap fst q) (ap fst s) (ap fst r)
→ Square p q s r
Σ-set-square Bset sq i j .fst = sq i j
Σ-set-square Bset {p} {q} {s} {r} sq i j .snd =
is-set→squarep (λ i j → Bset (sq i j))
(ap snd p) (ap snd q) (ap snd s) (ap snd r) i j


## Dependent sums of contractibles🔗

If B is a family of contractible types, then Σ B ≃ A:

Σ-contract : {B : A → Type ℓ} → (∀ x → is-contr (B x)) → Σ _ B ≃ A
Σ-contract bcontr = Iso→Equiv the-iso where
the-iso : Iso _ _
the-iso .fst (a , b) = a
the-iso .snd .is-iso.inv x = x , bcontr _ .centre
the-iso .snd .is-iso.rinv x = refl
the-iso .snd .is-iso.linv (a , b) i = a , bcontr a .paths b i

Σ-map
: (f : A → A')
→ ({x : A} → P x → Q (f x)) → Σ _ P → Σ _ Q
Σ-map f g (x , y) = f x , g y

Σ-map₂ : ({x : A} → P x → Q x) → Σ _ P → Σ _ Q
Σ-map₂ f (x , y) = (x , f y)

⟨_,_⟩ : (X → Y) → (X → Z) → X → Y × Z
⟨ f , g ⟩ x = f x , g x

×-map : (A → A') → (X → X') → A × X → A' × X'
×-map f g (x , y) = (f x , g y)

×-map₁ : (A → A') → A × X → A' × X
×-map₁ f = ×-map f id

×-map₂ : (X → X') → A × X → A × X'
×-map₂ f = ×-map id f

_,ₚ_ = Σ-pathp
infixr 4 _,ₚ_

Σ-prop-pathp
: ∀ {ℓ ℓ'} {A : I → Type ℓ} {B : ∀ i → A i → Type ℓ'}
→ (∀ i x → is-prop (B i x))
→ {x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)}
→ PathP A (x .fst) (y .fst)
→ PathP (λ i → Σ (A i) (B i)) x y
Σ-prop-pathp bp {x} {y} p i =
p i , is-prop→pathp (λ i → bp i (p i)) (x .snd) (y .snd) i

Σ-inj-set
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z}
→ is-set A
→ Path (Σ A B) (x , y) (x , z)
→ y ≡ z
Σ-inj-set {B = B} {y = y} {z} aset path =
subst (λ e → e ≡ z) (ap (λ e → transport (ap B e) y) (aset _ _ _ _) ∙ transport-refl y)
(from-pathp (ap snd path))

Σ-swap₂
: ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : A → B → Type ℓ''}
→ (Σ[ x ∈ A ] Σ[ y ∈ B ] (C x y)) ≃ (Σ[ y ∈ B ] Σ[ x ∈ A ] (C x y))
Σ-swap₂ .fst (x , y , f) = y , x , f
Σ-swap₂ .snd .is-eqv y = contr (f .fst) (f .snd) where
f = strict-fibres _ y
-- agda can actually infer the inverse here, which is neat

×-swap
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ (A × B) ≃ (B × A)
×-swap .fst (x , y) = y , x
×-swap .snd .is-eqv y = contr (f .fst) (f .snd) where
f = strict-fibres _ y

Σ-contr-eqv
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
→ (c : is-contr A)
→ (Σ A B) ≃ B (c .centre)
Σ-contr-eqv {B = B} c .fst (_ , p) = subst B (sym (c .paths _)) p
Σ-contr-eqv {B = B} c .snd = is-iso→is-equiv λ where
.is-iso.inv x → _ , x
.is-iso.rinv x → ap (λ e → subst B e x) (is-contr→is-set c _ _ _ _) ∙ transport-refl x
.is-iso.linv x → Σ-path (c .paths _) (transport⁻transport (ap B (sym (c .paths (x .fst)))) (x .snd))

module _ {ℓ ℓ' ℓ''} {X : Type ℓ} {Y : X → Type ℓ'} {Z : (x : X) → Y x → Type ℓ''} where
curry : ((p : Σ X Y) → Z (p .fst) (p .snd)) → (x : X) → (y : Y x) → Z x y
curry f a b = f (a , b)

uncurry : ((x : X) → (y : Y x) → Z x y) → (p : Σ X Y) → Z (p .fst) (p .snd)
uncurry f (a , b) = f a b