module 1Lab.Type.Pi where
Properties of Π types🔗
This module contains properties of dependent function types, not necessarily organised in any way.
Closure under equivalences🔗
Univalence automatically implies that every type former respects equivalences. However, this theorem is limited to equivalences between types in the same universe. Thus, there are functions to perturb the codomain of a dependent function by an equivalence across universe levels:
Π-cod≃ : ((x : A) → P x ≃ Q x) → ((x : A) → P x) ≃ ((x : A) → Q x) Π-cod≃ k .fst f x = k x .fst (f x) Π-cod≃ k .snd .is-eqv f .centre .fst x = equiv-centre (k x) (f x) .fst Π-cod≃ k .snd .is-eqv f .centre .snd i x = equiv-centre (k x) (f x) .snd i Π-cod≃ k .snd .is-eqv f .paths (g , p) i .fst x = equiv-path (k x) (f x) (g x , λ j → p j x) i .fst Π-cod≃ k .snd .is-eqv f .paths (g , p) i .snd j x = equiv-path (k x) (f x) (g x , λ k → p k x) i .snd j Π-dom≃ : (e : B ≃ A) → ((x : A) → P x) ≃ ((x : B) → P (e .fst x)) Π-dom≃ {P = P} e = Iso→Equiv λ where .fst k x → k (e .fst x) .snd .is-iso.inv k x → subst P (e.ε x) (k (e.from x)) .snd .is-iso.rinv k → funext λ x → ap₂ (subst P) (sym (e.zig x)) (sym (from-pathp (symP (ap k (e.η x))))) ∙ transport⁻transport (ap P (ap (e .fst) (sym (e.η x)))) (k x) .snd .is-iso.linv k → funext λ x → ap (subst P _) (sym (from-pathp (symP (ap k (e.ε x))))) ∙ transport⁻transport (sym (ap P (e.ε x))) _ where module e = Equiv e Π-impl-cod≃ : ((x : A) → P x ≃ Q x) → ({x : A} → P x) ≃ ({x : A} → Q x) Π-impl-cod≃ k .fst f {x} = k x .fst (f {x}) Π-impl-cod≃ k .snd .is-eqv f .centre .fst {x} = equiv-centre (k x) (f {x}) .fst Π-impl-cod≃ k .snd .is-eqv f .centre .snd i {x} = equiv-centre (k x) (f {x}) .snd i Π-impl-cod≃ k .snd .is-eqv f .paths (g , p) i .fst {x} = equiv-path (k x) (f {x}) (g {x} , λ j → p j {x}) i .fst Π-impl-cod≃ k .snd .is-eqv f .paths (g , p) i .snd j {x} = equiv-path (k x) (f {x}) (g {x} , λ k → p k {x}) i .snd j
For non-dependent functions, we can easily perturb both domain and codomain:
function≃ : (A ≃ B) → (C ≃ D) → (A → C) ≃ (B → D) function≃ dom rng = Iso→Equiv the-iso where rng-iso = is-equiv→is-iso (rng .snd) dom-iso = is-equiv→is-iso (dom .snd) the-iso : Iso _ _ the-iso .fst f x = rng .fst (f (dom-iso .is-iso.inv x)) the-iso .snd .is-iso.inv f x = rng-iso .is-iso.inv (f (dom .fst x)) the-iso .snd .is-iso.rinv f = funext λ x → rng-iso .is-iso.rinv _ ∙ ap f (dom-iso .is-iso.rinv _) the-iso .snd .is-iso.linv f = funext λ x → rng-iso .is-iso.linv _ ∙ ap f (dom-iso .is-iso.linv _) equiv≃ : (A ≃ B) → (C ≃ D) → (A ≃ C) ≃ (B ≃ D) equiv≃ x y = Σ-ap (function≃ x y) λ f → prop-ext (is-equiv-is-prop _) (is-equiv-is-prop _) (λ e → ∙-is-equiv (∙-is-equiv ((x e⁻¹) .snd) e) (y .snd)) λ e → equiv-cancelr ((x e⁻¹) .snd) (equiv-cancell (y .snd) e)
Dependent funext🔗
When the domain and codomain are simple types (rather than a higher
shape), paths in function spaces are characterised by funext
. We can generalise this
to funext-dep
, in which the domain and codomain are allowed
to be lines of types:
funextP : ∀ {A : Type ℓ} {B : A → I → Type ℓ₁} → {f : ∀ a → B a i0} {g : ∀ a → B a i1} → (∀ a → PathP (B a) (f a) (g a)) → PathP (λ i → ∀ a → B a i) f g funextP p i x = p x i funext-dep : ∀ {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f g} → ( ∀ {x₀ x₁} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁) ) → PathP (λ i → (x : A i) → B i x) f g funext-dep {A = A} {B} h i x = transp (λ k → B i (coei→i A i x k)) (i ∨ ~ i) (h (λ j → coe A i j x) i)
A slightly wonky cubical argument shows that this function is an
equivalence. The complication comes from coe
not being
definitionally the identity when staying at a variable point in the
interval.
funext-dep≃ : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ( {x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁) ) ≃ PathP (λ i → (x : A i) → B i x) f g
funext-dep≃ {A = A} {B} {f} {g} = Iso→Equiv isom where open is-iso isom : Iso _ _ isom .fst = funext-dep isom .snd .is-iso.inv q p i = q i (p i) isom .snd .rinv q m i x = transp (λ k → B i (coei→i A i x (k ∨ m))) (m ∨ i ∨ ~ i) (q i (coei→i A i x m)) isom .snd .linv h m p i = transp (λ k → B i (lemi→i m k)) (m ∨ i ∨ ~ i) (h (λ j → lemi→j j m) i) where lemi→j : ∀ j → coe A i j (p i) ≡ p j lemi→j j k = coe-path A (λ i → p i) i j k lemi→i : PathP (λ m → lemi→j i m ≡ p i) (coei→i A i (p i)) refl lemi→i m k = coei→i A i (p i) (m ∨ k) hetero-homotopy≃homotopy : {A : I → Type ℓ} {B : (i : I) → Type ℓ₁} {f : A i0 → B i0} {g : A i1 → B i1} → ({x₀ : A i0} {x₁ : A i1} → PathP A x₀ x₁ → PathP B (f x₀) (g x₁)) ≃ ((x₀ : A i0) → PathP B (f x₀) (g (coe0→1 A x₀))) hetero-homotopy≃homotopy {A = A} {B} {f} {g} = Iso→Equiv isom where open is-iso isom : Iso _ _ isom .fst h x₀ = h (SinglP-is-contr A x₀ .centre .snd) isom .snd .inv k {x₀} {x₁} p = subst (λ fib → PathP B (f x₀) (g (fib .fst))) (SinglP-is-contr A x₀ .paths (x₁ , p)) (k x₀) isom .snd .rinv k = funext λ x₀ → ap (λ α → subst (λ fib → PathP B (f x₀) (g (fib .fst))) α (k x₀)) (is-prop→is-set SinglP-is-prop (SinglP-is-contr A x₀ .centre) _ (SinglP-is-contr A x₀ .paths (SinglP-is-contr A x₀ .centre)) refl) ∙ transport-refl (k x₀) isom .snd .linv h j {x₀} {x₁} p = transp (λ i → PathP B (f x₀) (g (SinglP-is-contr A x₀ .paths (x₁ , p) (i ∨ j) .fst))) j (h (SinglP-is-contr A x₀ .paths (x₁ , p) j .snd))
funext² : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ x → B x → Type ℓ''} {f g : ∀ x y → C x y} → (∀ i j → f i j ≡ g i j) → f ≡ g funext² p i x y = p x y i funext-square : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {f00 f01 f10 f11 : (a : A) → B a} {p : f00 ≡ f01} {q : f00 ≡ f10} {s : f01 ≡ f11} {r : f10 ≡ f11} → (∀ a → Square (p $ₚ a) (q $ₚ a) (s $ₚ a) (r $ₚ a)) → Square p q s r funext-square p i j a = p a i j Π-⊤-eqv : ∀ {ℓ ℓ'} {B : Lift ℓ ⊤ → Type ℓ'} → (∀ a → B a) ≃ B _ Π-⊤-eqv .fst b = b _ Π-⊤-eqv .snd = is-iso→is-equiv λ where .is-iso.inv b _ → b .is-iso.rinv b → refl .is-iso.linv b → refl Π-contr-eqv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} → (c : is-contr A) → (∀ a → B a) ≃ B (c .centre) Π-contr-eqv c .fst b = b (c .centre) Π-contr-eqv {B = B} c .snd = is-iso→is-equiv λ where .is-iso.inv b a → subst B (c .paths a) b .is-iso.rinv b → ap (λ e → subst B e b) (is-contr→is-set c _ _ _ _) ∙ transport-refl b .is-iso.linv b → funext λ a → from-pathp (ap b (c .paths a)) flip : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : A → B → Type ℓ''} → (∀ a b → C a b) → (∀ b a → C a b) flip f b a = f a b