module Homotopy.Wedge where
Wedge connectivityπ
The wedge connectivity lemma gives a set of sufficient conditions for constructing a section
of a type family over pointed, connected types and While the actual statement and the proof are highly technical, it specialises to a fairly straightforward construction: to give a map it suffices to specify how it varies in each coordinate, and to show that these descriptions agree on the basepoints.
module Wedge {β β' β''} {Aβ@(A , aβ) : Typeβ β} {Bβ@(B , bβ) : Typeβ β'} {P : A β B β Type β''}
In addition to generalising to dependent functions, the actual statement of the lemma includes the conditions of connectedness on the two argument types, and truncation on the codomain. If is and is ( then each must be
(n m : Nat) (a-conn : is-n-connected A (2 + n)) (b-conn : is-n-connected B (2 + m)) (p-hl : β x y β is-hlevel (P x y) (2 + n + m))
Provided that everything fits together, we can actually give the data of interest: A function a function and a coherence path
(f : β a β P a bβ) (g : β b β P aβ b) (coh : f aβ β‘ g bβ) where
As mentioned above, the construction is highly technical. Itβs a direct transcription of the proof in (Univalent Foundations Program 2013, sec. 8.6.2).
private Q : A β Type (β' β β'') Q a = Ξ£ ((b : B) β P a b) (Ξ» k β k bβ β‘ f a) remβ' : (x : A) β is-hlevel (fibre (_β (Ξ» _ β bβ)) (Ξ» _ β f x)) (1 + n) remβ' a = relative-n-type-const-plus {A = β€} (P a) (Ξ» _ β bβ) (suc m) (suc n) (point-is-n-connected bβ m b-conn) (Ξ» b β subst (is-hlevel (P a b)) (sym (ap suc (+-sucr n m))) (p-hl a b)) (Ξ» _ β f a) opaque worker : Ξ£ ((b : A) β Q b) (Ξ» h β Path (β€ β Q aβ) (Ξ» _ β h aβ) (Ξ» _ β g , sym coh)) worker = connected-elimination-principle (suc n) Q hl (g , sym coh) a-conn where hl : (x : A) β is-hlevel (Q x) (suc n) hl x = retractβis-hlevel (suc n) (Ξ» (p , q) β p , happly q tt) (Ξ» (p , q) β p , funext Ξ» _ β q) (Ξ» _ β refl) (remβ' x)
If everything fits together, then we end up with the following data, in addition to the section A proof a proof that and a proof that, at these differ by the specified coherence
opaque elim : β x y β P x y elim x y = worker .fst x .fst y Ξ²β : β a β elim a bβ β‘ f a Ξ²β a = worker .fst a .snd Ξ²β : β b β elim aβ b β‘ g b Ξ²β b = ap fst (worker .snd $β tt) $β b Ξ²-path : Ξ²β bβ β sym coh β‘ Ξ²β aβ Ξ²-path = squareβcommutes (ap snd (worker .snd $β tt)) β β-idr _
References
- Univalent Foundations Program, The. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book.