module Homotopy.Wedge where

Wedge connectivityπŸ”—

The wedge connectivity lemma gives a set of sufficient conditions for constructing a section

of a type family over pointed, connected types and While the actual statement and the proof are highly technical, it specialises to a fairly straightforward construction: to give a map it suffices to specify how it varies in each coordinate, and to show that these descriptions agree on the basepoints.

In addition to generalising to dependent functions, the actual statement of the lemma includes the conditions of connectedness on the two argument types, and truncation on the codomain. If is and is ( then each must be

    (n m : Nat)
    (a-conn : is-n-connected A (2 + n))
    (b-conn : is-n-connected B (2 + m))
    (p-hl : βˆ€ x y β†’ is-hlevel (P x y) (2 + n + m))

Provided that everything fits together, we can actually give the data of interest: A function a function and a coherence path

    (f : βˆ€ a β†’ P a bβ‚€) (g : βˆ€ b β†’ P aβ‚€ b) (coh : f aβ‚€ ≑ g bβ‚€)
  where
As mentioned above, the construction is highly technical. It’s a direct transcription of the proof in (Univalent Foundations Program 2013, sec. 8.6.2).
  private
    Q : A β†’ Type (β„“' βŠ” β„“'')
    Q a = Ξ£ ((b : B) β†’ P a b) (Ξ» k β†’ k bβ‚€ ≑ f a)

    remβ‚‚' : (x : A) β†’ is-hlevel (fibre (_∘ (Ξ» _ β†’ bβ‚€)) (Ξ» _ β†’ f x)) (1 + n)
    remβ‚‚' a = relative-n-type-const-plus {A = ⊀} (P a) (Ξ» _ β†’ bβ‚€) (suc m) (suc n)
      (point-is-n-connected bβ‚€ m b-conn)
      (Ξ» b β†’ subst (is-hlevel (P a b)) (sym (ap suc (+-sucr n m))) (p-hl a b))
      (Ξ» _ β†’ f a)

    opaque
      worker : Ξ£ ((b : A) β†’ Q b) (Ξ» h β†’ Path (⊀ β†’ Q aβ‚€) (Ξ» _ β†’ h aβ‚€) (Ξ» _ β†’ g , sym coh))
      worker = connected-elimination-principle (suc n) Q hl (g , sym coh) a-conn where
        hl : (x : A) β†’ is-hlevel (Q x) (suc n)
        hl x = retract→is-hlevel (suc n)
          (Ξ» (p , q) β†’ p , happly q tt)
          (Ξ» (p , q) β†’ p , funext Ξ» _ β†’ q)
          (Ξ» _ β†’ refl) (remβ‚‚' x)

If everything fits together, then we end up with the following data, in addition to the section A proof a proof that and a proof that, at these differ by the specified coherence

  opaque
    elim : βˆ€ x y β†’ P x y
    elim x y = worker .fst x .fst y

    β₁ : βˆ€ a β†’ elim a bβ‚€ ≑ f a
    β₁ a = worker .fst a .snd

    Ξ²β‚‚ : βˆ€ b β†’ elim aβ‚€ b ≑ g b
    Ξ²β‚‚ b = ap fst (worker .snd $β‚š tt) $β‚š b

    Ξ²-path : Ξ²β‚‚ bβ‚€ βˆ™ sym coh ≑ β₁ aβ‚€
    Ξ²-path = squareβ†’commutes (ap snd (worker .snd $β‚š tt)) βˆ™ βˆ™-idr _

References