open import 1Lab.Prelude

open import Data.Wellfounded.Properties
open import Data.Wellfounded.Base
open import Data.Nat.Properties
open import Data.Nat.Divisible
open import Data.Nat.DivMod
open import Data.Nat.Order
open import Data.Nat.Base
open import Data.Sum.Base

module Data.Nat.Divisible.GCD where


# Greatest common divisors🔗

The greatest common divisor $\gcd(a,b)$ of a pair of natural numbers is the largest number which divides them both. The definition we use is slightly unorthodox, since it requires only that the GCD be the greatest in the divisibility ordering, but the divisibility ordering is finer than the usual ordering, so this will turn out to imply they are greatest in magnitude, as well.

We start by defining what it means for a number to be a GCD — that is, we start by defining the graph of the function $\gcd$. Only after will we show that such a function exists.

record is-gcd (x y : Nat) (gcd : Nat) : Type where
field
gcd-∣l : gcd ∣ x
gcd-∣r : gcd ∣ y
greatest : ∀ {g'} → g' ∣ x → g' ∣ y → g' ∣ gcd

open is-gcd

is-gcd-is-prop : ∀ {x y z} → is-prop (is-gcd x y z)
is-gcd-is-prop p q i .gcd-∣l = ∣-is-prop _ _ (p .gcd-∣l) (q .gcd-∣l) i
is-gcd-is-prop p q i .gcd-∣r = ∣-is-prop _ _ (p .gcd-∣r) (q .gcd-∣r) i
is-gcd-is-prop p q i .greatest a b = ∣-is-prop _ _ (p .greatest a b) (q .greatest a b) i

instance
H-Level-is-gcd : ∀ {x y z n} → H-Level (is-gcd x y z) (suc n)
H-Level-is-gcd = prop-instance is-gcd-is-prop

GCD : Nat → Nat → Type
GCD a b = Σ _ (is-gcd a b)

GCD-is-prop : ∀ {a b} → is-prop (GCD a b)
GCD-is-prop (_ , p) (_ , q) = Σ-prop-path! $∣-antisym (q .greatest (p .gcd-∣l) (p .gcd-∣r)) (p .greatest (gcd-∣l q) (gcd-∣r q)) GCD-magnitude : ∀ {x y g : Nat} → is-gcd x y (suc g) → ∀ {g'} → g' ∣ x → g' ∣ y → g' ≤ suc g GCD-magnitude gcd α β = m∣sn→m≤sn (gcd .greatest α β)  The following observations may seem trivial, but it will come in super handy later: If $x | y$, then the GCD of $x$ and $y$ is $x$; Similarly, the GCD function is “symmetric”, meaning $\gcd(a,b) = \gcd(b,a)$. divides→GCD : ∀ {x y} → x ∣ y → GCD x y divides→GCD {x} {y} w = x , gcd where gcd : is-gcd x y x gcd .gcd-∣l = ∣-refl gcd .gcd-∣r = w gcd .greatest g'∣x g'∣y = g'∣x GCD-sym : ∀ {x y} → GCD x y → GCD y x GCD-sym w .fst = w .fst GCD-sym w .snd .gcd-∣l = w .snd .gcd-∣r GCD-sym w .snd .gcd-∣r = w .snd .gcd-∣l GCD-sym w .snd .greatest g'∣y g'∣x = w .snd .greatest g'∣x g'∣y  ## Euclid’s algorithm🔗 To compute greatest common divisors, we use the familiar (recursive) Euclidean algorithm: $\gcd(a,0) = a$ and $\gcd(a, b) = \gcd(b, a \% b)$ otherwise. The difficulty comes in when we want not only to compute the numbers (in which case the definition above is perfectly cromulent), but also to show that they are greatest common divisors. module Euclid where private variable n m k d d' : Nat  The base case can be established using our existing functions:  is-gcd-0 : is-gcd n 0 n is-gcd-0 .gcd-∣l = ∣-refl is-gcd-0 .gcd-∣r = ∣-zero is-gcd-0 .greatest g'∣n g∣n = g'∣n  The inductive step is a bit more complicated. We first have to establish (using the most tedious of arithmetic properties) the following properties of the divisibility relation: • If $n$ is nonzero, $d|n$, and $d|(m \% n)$, then $d|m$; • If $n$ is nonzero, $d|n$, and $d|m$, then $d|(m \% n)$. These two facts, incarnated in the following helper lemmas lem₁ and lem₂, will allow us to compute the inductive step for GCD.  private lem₁ : fibre (_* d) (suc n) → fibre (_* d) (m % suc n) → fibre (_* d) m lem₁ {d = d} {n} {m} (c₁ , p) (c₂ , q) = dm.q * c₁ + c₂ , r where module dm = DivMod (divide-pos m (suc n)) renaming (quot to q ; rem to r) r = (dm.q * c₁ + c₂) * d ≡⟨ *-distrib-+r (dm.q * c₁) _ _ ⟩≡ dm.q * c₁ * d + ⌜ c₂ * d ⌝ ≡⟨ ap! q ⟩≡ ⌜ dm.q * c₁ * d ⌝ + dm.r ≡⟨ ap! (*-associative dm.q c₁ d) ⟩≡ dm.q * ⌜ c₁ * d ⌝ + dm.r ≡⟨ ap! p ⟩≡ dm.q * suc n + dm.r ≡˘⟨ is-divmod m (suc n) ⟩≡˘ m ∎ lem₂ : fibre (_* d) (suc n) → fibre (_* d) m → fibre (_* d) (m % suc n) lem₂ {d = d} {n} {m} (c₁ , p) (c₂ , q) = c₂ - dm.q * c₁ , r where module dm = DivMod (divide-pos m (suc n)) renaming (quot to q ; rem to r) r = (c₂ - dm.q * c₁) * d ≡⟨ monus-distribr c₂ (dm.q * c₁) d ⟩≡ c₂ * d - ⌜ dm.q * c₁ * d ⌝ ≡⟨ ap! (*-associative dm.q c₁ d ∙ ap (dm.q *_) p) ⟩≡ ⌜ c₂ * d ⌝ - dm.q * suc n ≡⟨ ap! (q ∙ is-divmod m (suc n)) ⟩≡ ⌜ dm.q * suc n + dm.r ⌝ - dm.q * suc n ≡⟨ ap! (+-commutative (dm.q * suc n) dm.r) ⟩≡ (dm.r + dm.q * suc n) - dm.q * suc n ≡⟨ monus-cancelr dm.r 0 (dm.q * suc n) ⟩≡ dm.r ∎  That step is put together here: It says that, if ($n$ is nonzero and) $\gcd(n, m \% n) = d$, then $\gcd(m, n) = d$, too — so that it will suffice to compute the former if we want the latter.  is-gcd-step : is-gcd (suc n) (m % suc n) d → is-gcd m (suc n) d is-gcd-step x .gcd-∣l = fibre→∣ (lem₁ (∣→fibre (x .gcd-∣l)) (∣→fibre (x .gcd-∣r))) is-gcd-step x .gcd-∣r = x .gcd-∣l is-gcd-step x .greatest g'∣m g'∣sucn = x .greatest g'∣sucn (fibre→∣ (lem₂ (∣→fibre g'∣sucn) (∣→fibre g'∣m)))  Actually putting this together is a bit indirect, since we are not performing structural induction: Agda can’t see that the argument $m \% n$ is less than $n$. We can, however, turn this into well-founded recursion, which demands only that the recursive call be less (in the sense of $<$) than the original input.  euclid-< : ∀ y x → x < y → GCD y x euclid-< = Wf-induction _ <-wf _ λ where x rec zero p → x , is-gcd-0 x rec (suc y) p → let (d , step) = rec (suc y) p (x % suc y) (x%y<y x (suc y)) in d , is-gcd-step step  With a handy wrapper to put the arguments in the order our induction worker euclid-< expects, we can create the euclid function, together with its numerical component gcd, and a proof that the graph of gcd is indeed is-gcd.  euclid : ∀ x y → GCD x y euclid x y with ≤-split y x ... | inl y<x = euclid-< x y y<x ... | inr (inl x<y) = GCD-sym (euclid-< y x x<y) ... | inr (inr y=x) = divides→GCD (subst (x ∣_) (sym y=x) ∣-refl) gcd : Nat → Nat → Nat gcd x y = Euclid.euclid x y .fst is-gcd-graphs-gcd : ∀ {m n d} → is-gcd m n d ≃ (gcd m n ≡ d) is-gcd-graphs-gcd {m = m} {n} {d} = prop-ext! (λ x → ap fst$ GCD-is-prop (gcd m n , Euclid.euclid m n .snd) (d , x))
(λ p → subst (is-gcd m n) p (Euclid.euclid m n .snd))