module Data.Dec.Base where
Decidable types🔗
The type Dec
, of
decisions for a type A
, is a renaming of
the coproduct A ⊎ ¬ A
. A value of Dec A
witnesses not that A
is decidable, but that it has been
decided; A witness of decidability, then, is a proof assigning
decisions to values of a certain type.
data Dec {ℓ} (A : Type ℓ) : Type ℓ where yes : (a : A) → Dec A no : (¬a : ¬ A) → Dec A Dec-elim : ∀ {ℓ ℓ'} {A : Type ℓ} (P : Dec A → Type ℓ') → (∀ y → P (yes y)) → (∀ y → P (no y)) → ∀ x → P x Dec-elim P f g (yes x) = f x Dec-elim P f g (no x) = g x Dec-rec : ∀ {ℓ ℓ'} {A : Type ℓ} {X : Type ℓ'} → (A → X) → (¬ A → X) → Dec A → X Dec-rec = Dec-elim _
recover : ∀ {ℓ} {A : Type ℓ} ⦃ d : Dec A ⦄ → .A → A recover ⦃ yes x ⦄ _ = x recover ⦃ no ¬x ⦄ x = absurd (¬x x) dec→dne : ∀ {ℓ} {A : Type ℓ} ⦃ d : Dec A ⦄ → ¬ ¬ A → A dec→dne ⦃ yes x ⦄ _ = x dec→dne ⦃ no ¬x ⦄ ¬¬x = absurd (¬¬x ¬x)
A type is discrete if it has decidable equality.
Discrete : ∀ {ℓ} → Type ℓ → Type ℓ Discrete A = {x y : A} → Dec (x ≡ y)
If we can construct a pair of maps
and
then we can deduce decidability of
from decidability of
that is, Dec
is an
Invariant
functor.
instance Invariant-Dec : Invariant (eff Dec) Invariant-Dec .Invariant.invmap f g (yes a) = yes (f a) Invariant-Dec .Invariant.invmap f g (no ¬a) = no (¬a ∘ g)
This lets us show the following useful lemma: if injects into a discrete type, then is also discrete.
Discrete-inj : (f : A → B) → (∀ {x y} → f x ≡ f y → x ≡ y) → Discrete B → Discrete A Discrete-inj f inj eq? {x} {y} = invmap inj (ap f) (eq? {f x} {f y})
Programming with decisions🔗
Despite the failure of Dec A
to be a proposition for general A
, in
the 1Lab, we like to work with decisions through instance search. This
is facilitated by the following functions, which perform instance
search:
-- Searches for a type given explicitly. holds? : ∀ {ℓ} (A : Type ℓ) ⦃ d : Dec A ⦄ → Dec A holds? A ⦃ d ⦄ = d -- Searches for equality of inhabitants of a discrete type. _≡?_ : ⦃ d : Discrete A ⦄ (x y : A) → Dec (x ≡ y) x ≡? y = holds? (x ≡ y) infix 3 _≡?_
And the following operators, which combine instance search with case analysis:
caseᵈ_of_ : ∀ {ℓ ℓ'} (A : Type ℓ) ⦃ d : Dec A ⦄ {B : Type ℓ'} → (Dec A → B) → B caseᵈ A of f = f (holds? A) caseᵈ_return_of_ : ∀ {ℓ ℓ'} (A : Type ℓ) ⦃ d : Dec A ⦄ (B : Dec A → Type ℓ') → (∀ x → B x) → B d caseᵈ A return P of f = f (holds? A) {-# INLINE caseᵈ_of_ #-} {-# INLINE caseᵈ_return_of_ #-}
We then have the following basic instances for combining decisions, expressing that the class of decidable types is closed under sums, products and functions, and contains the unit type and the empty type.
instance Dec-⊎ : ⦃ _ : Dec A ⦄ ⦃ _ : Dec B ⦄ → Dec (A ⊎ B) Dec-⊎ ⦃ yes A ⦄ ⦃ _ ⦄ = yes (inl A) Dec-⊎ ⦃ no ¬A ⦄ ⦃ yes B ⦄ = yes (inr B) Dec-⊎ ⦃ no ¬A ⦄ ⦃ no ¬B ⦄ = no [ ¬A , ¬B ] Dec-× : ⦃ _ : Dec P ⦄ ⦃ _ : Dec Q ⦄ → Dec (P × Q) Dec-× {Q = _} ⦃ yes p ⦄ ⦃ yes q ⦄ = yes (p , q) Dec-× {Q = _} ⦃ yes p ⦄ ⦃ no ¬q ⦄ = no λ z → ¬q (snd z) Dec-× {Q = _} ⦃ no ¬p ⦄ ⦃ _ ⦄ = no λ z → ¬p (fst z) Dec-→ : ⦃ _ : Dec P ⦄ ⦃ _ : Dec Q ⦄ → Dec (P → Q) Dec-→ {Q = _} ⦃ yes p ⦄ ⦃ yes q ⦄ = yes λ _ → q Dec-→ {Q = _} ⦃ yes p ⦄ ⦃ no ¬q ⦄ = no λ pq → ¬q (pq p) Dec-→ {Q = _} ⦃ no ¬p ⦄ ⦃ q ⦄ = yes λ p → absurd (¬p p) {-# INCOHERENT Dec-→ #-} Dec-⊤ : Dec ⊤ Dec-⊤ = yes tt Dec-⊥ : Dec ⊥ Dec-⊥ = no id Dec-Lift : ∀ {ℓ ℓ'} {A : Type ℓ} → ⦃ Dec A ⦄ → Dec (Lift ℓ' A) Dec-Lift ⦃ d ⦄ = Lift-≃ e⁻¹ <≃> d
These closure properties make Dec
a Monoidal
and Alternative
functor.
instance Monoidal-Dec : Monoidal (eff Dec) Monoidal-Dec .Monoidal.munit = Dec-⊤ Monoidal-Dec .Monoidal._<,>_ a b = Dec-× ⦃ a ⦄ ⦃ b ⦄ Alternative-Dec : Alternative (eff Dec) Alternative-Dec .Alternative.empty = Dec-⊥ Alternative-Dec .Alternative._<+>_ a b = Dec-⊎ ⦃ a ⦄ ⦃ b ⦄
infix 0 ifᵈ_then_else_ ifᵈ_then_else_ : Dec A → B → B → B ifᵈ yes a then y else n = y ifᵈ no ¬a then y else n = n is-yes : ∀ {ℓ} {A : Type ℓ} → Dec A → Type is-yes (yes x) = ⊤ is-yes (no _) = ⊥ decide! : ∀ {ℓ} {A : Type ℓ} ⦃ d : Dec A ⦄ {_ : is-yes d} → A decide! ⦃ yes x ⦄ = x
Relation to sums🔗
The decidability of can also be phrased as so we provide helpers to convert between the two.
from-dec : Dec A → A ⊎ ¬ A from-dec (yes a) = inl a from-dec (no ¬a) = inr ¬a to-dec : A ⊎ ¬ A → Dec A to-dec (inl a) = yes a to-dec (inr ¬a) = no ¬a
The proof that these functions are inverses is automatic by computation, and thus it can be shown they are equivalences:
from-dec-is-equiv : {A : Type ℓ} → is-equiv (from-dec {A = A}) from-dec-is-equiv = is-iso→is-equiv (iso to-dec p q) where p : _ p (inl x) = refl p (inr ¬x) = refl q : _ q (yes x) = refl q (no x) = refl