module 1Lab.HLevel.Universe where
Universes of n-typesπ
A common phenomenon in higher category theory is that the collection of all in a given universe assembles into an in the successor universe
- The collection of all sets (0-categories) is a (1-)-category;
- The collection of all (1-)categories is a 2-category;
- The collection of all 2-categories is a 3-category;
Because of the univalence axiom, the same phenomenon can be observed in homotopy type theory: The subuniverse of consisting of all is a in That means: the universe of propositions is a set, the universe of sets is a groupoid, the universe of groupoids is a bigroupoid, and so on.
h-Levels of equivalencesπ
As warmup, we prove that if and are then so is the type of equivalences For the case where is a successor, this only depends on the h-level of
β-is-hlevel : (n : Nat) β is-hlevel A n β is-hlevel B n β is-hlevel (A β B) n β-is-hlevel {A = A} {B = B} zero Ahl Bhl = contr (f , f-eqv) deform where f : A β B f _ = Bhl .centre f-eqv : is-equiv f f-eqv = is-contrβis-equiv Ahl Bhl
For the zero
case, weβre
asked to give a proof of contractibility
of
A β B
. As the centre we pick the canonical function sending
to the centre of contraction
of
which is an equivalence because it is a map between contractible types
.
By the characterisation of paths in Ξ£
and the fact that being an equivalence is a proposition
,
we get the required family of paths deforming any
to our f
.
deform : (g : A β B) β (f , f-eqv) β‘ g deform (g , g-eqv) = Ξ£-path (Ξ» i x β Bhl .paths (g x) i) (is-equiv-is-prop _ _ _)
As mentioned before, the case for successors does not depend on the proof that has the given h-level. This is because, for has the same h-level as which is the same as
β-is-hlevel (suc n) _ Bhl = Ξ£-is-hlevel (suc n) (fun-is-hlevel (suc n) Bhl) Ξ» f β is-propβis-hlevel-suc (is-equiv-is-prop f)
h-Levels of pathsπ
Univalence states that the type is equivalent to Since the latter is of h-level when and are then so is the former:
β‘-is-hlevel : (n : Nat) β is-hlevel A n β is-hlevel B n β is-hlevel (A β‘ B) n β‘-is-hlevel n Ahl Bhl = equivβis-hlevel n ua univalenceβ»ΒΉ (β-is-hlevel n Ahl Bhl)
Universesπ
We refer to the dependent sum of the family is-hlevel - n
as
n-Type
:
record n-Type β n : Type (lsuc β) where no-eta-equality constructor el field β£_β£ : Type β is-tr : is-hlevel β£_β£ n
infix 100 β£_β£ instance H-Level-n-type : β {k} β H-Level β£_β£ (n + k) H-Level-n-type = basic-instance n is-tr open n-Type using (β£_β£ ; is-tr ; H-Level-n-type) public
Like mentioned in the introduction, the main theorem of this section
is that n-Type
is a type of h-level
We take a detour first and establish a characterisation of paths for
n-Type
: Since is-tr
is a proposition, paths in
n-Type
are determined by paths of
the underlying types. By univalence, these correspond to
equivalences of the underlying type:
n-path : {n : Nat} {X Y : n-Type β n} β β£ X β£ β‘ β£ Y β£ β X β‘ Y n-path f i .β£_β£ = f i n-path {n = n} {X} {Y} f i .is-tr = is-propβpathp (Ξ» i β is-hlevel-is-prop {A = f i} n) (X .is-tr) (Y .is-tr) i n-ua : {n : Nat} {X Y : n-Type β n} β β£ X β£ β β£ Y β£ β X β‘ Y n-ua f = n-path (ua f) n-univalence : {n : Nat} {X Y : n-Type β n} β (β£ X β£ β β£ Y β£) β (X β‘ Y) n-univalence {n = n} {X} {Y} = n-ua , is-isoβis-equiv isic where inv : β {Y} β X β‘ Y β β£ X β£ β β£ Y β£ inv p = pathβequiv (ap β£_β£ p) linv : β {Y} β is-left-inverse (inv {Y}) n-ua linv x = Ξ£-prop-path is-equiv-is-prop (funext Ξ» x β transport-refl _) rinv : β {Y} β is-right-inverse (inv {Y}) n-ua rinv = J (Ξ» y p β n-ua (inv p) β‘ p) path where path : n-ua (inv {X} refl) β‘ refl path i j .β£_β£ = ua.Ξ΅ {A = β£ X β£} refl i j path i j .is-tr = is-propβsquarep (Ξ» i j β is-hlevel-is-prop {A = ua.Ξ΅ {A = β£ X β£} refl i j} n) (Ξ» j β X .is-tr) (Ξ» j β n-ua {X = X} {Y = X} (pathβequiv refl) j .is-tr) (Ξ» j β X .is-tr) (Ξ» j β X .is-tr) i j isic : is-iso n-ua isic = iso inv rinv (linv {Y})
Since h-levels are closed under equivalence, and we already have an upper bound on the h-level of when is an we know that is a
n-Type-is-hlevel : β n β is-hlevel (n-Type β n) (suc n) n-Type-is-hlevel zero x y = n-ua ((Ξ» _ β y .is-tr .centre) , is-contrβis-equiv (x .is-tr) (y .is-tr)) n-Type-is-hlevel (suc n) x y = Equivβis-hlevel (suc n) (n-univalence eβ»ΒΉ) (β-is-hlevel (suc n) (x .is-tr) (y .is-tr))
For 1-categorical mathematics, the important h-levels are the propositions and the sets, so they get short names:
Set : β β β Type (lsuc β) Set β = n-Type β 2 Prop : β β β Type (lsuc β) Prop β = n-Type β 1
Β¬Set-is-prop : Β¬ is-prop (Set β) Β¬Set-is-prop prop = lower $ transport (ap β£_β£ (prop (el (Lift _ β€) (hlevel 2)) (el (Lift _ β₯) (hlevel 2)))) (lift tt)
n-Type-square : β {β} {n} β {w x y z : n-Type β n} β {p : x β‘ w} {q : x β‘ y} {s : w β‘ z} {r : y β‘ z} β Square (ap β£_β£ p) (ap β£_β£ q) (ap β£_β£ s) (ap β£_β£ r) β Square p q s r n-Type-square sq i j .β£_β£ = sq i j n-Type-square {p = p} {q} {s} {r} sq i j .is-tr = is-propβsquarep (Ξ» i j β is-hlevel-is-prop {A = sq i j} _) (ap is-tr p) (ap is-tr q) (ap is-tr s) (ap is-tr r) i j