module 1Lab.HLevel.Universe where
Universes of n-types🔗
A common phenomenon in higher category theory is that the collection of all in a given universe assembles into an in the successor universe
- The collection of all sets (0-categories) is a (1-)-category;
- The collection of all (1-)categories is a 2-category;
- The collection of all 2-categories is a 3-category;
Because of the univalence axiom, the same phenomenon can be observed in homotopy type theory: The subuniverse of consisting of all is a in That means: the universe of propositions is a set, the universe of sets is a groupoid, the universe of groupoids is a bigroupoid, and so on.
h-Levels of equivalences🔗
As warmup, we prove that if and are then so is the type of equivalences For the case where is a successor, this only depends on the h-level of
≃-is-hlevel : (n : Nat) → is-hlevel A n → is-hlevel B n → is-hlevel (A ≃ B) n ≃-is-hlevel {A = A} {B = B} zero Ahl Bhl = contr (f , f-eqv) deform where f : A → B f _ = Bhl .centre f-eqv : is-equiv f f-eqv = is-contr→is-equiv Ahl Bhl
For the zero
case, we’re asked to
give a proof of contractibility
of
A ≃ B
. As the centre we pick the canonical function sending
to the centre of contraction
of
which is an equivalence because it is a map between contractible types
.
By the characterisation of paths in Σ
and the fact that being an equivalence is a proposition
,
we get the required family of paths deforming any
to our f
.
deform : (g : A ≃ B) → (f , f-eqv) ≡ g deform (g , g-eqv) = Σ-path (λ i x → Bhl .paths (g x) i) (is-equiv-is-prop _ _ _)
As mentioned before, the case for successors does not depend on the proof that has the given h-level. This is because, for has the same h-level as which is the same as
≃-is-hlevel (suc n) _ Bhl = Σ-is-hlevel (suc n) (fun-is-hlevel (suc n) Bhl) λ f → is-prop→is-hlevel-suc (is-equiv-is-prop f)
h-Levels of paths🔗
Univalence states that the type is equivalent to Since the latter is of h-level when and are then so is the former:
≡-is-hlevel : (n : Nat) → is-hlevel A n → is-hlevel B n → is-hlevel (A ≡ B) n ≡-is-hlevel n Ahl Bhl = equiv→is-hlevel n ua univalence⁻¹ (≃-is-hlevel n Ahl Bhl)
Universes🔗
We refer to the dependent sum of the family is-hlevel - n
as
n-Type
:
record n-Type ℓ n : Type (lsuc ℓ) where no-eta-equality constructor el field ∣_∣ : Type ℓ is-tr : is-hlevel ∣_∣ n
infix 100 ∣_∣ instance H-Level-n-type : ∀ {k} → H-Level ∣_∣ (n + k) H-Level-n-type = basic-instance n is-tr open n-Type using (∣_∣ ; is-tr ; H-Level-n-type) public
Like mentioned in the introduction, the main theorem of this section
is that n-Type
is a type of h-level
We take a detour first and establish a characterisation of paths for
n-Type
:
Since is-tr
is a
proposition, paths in n-Type
are determined by
paths of the underlying types. By univalence, these correspond to
equivalences of the underlying type:
n-path : {n : Nat} {X Y : n-Type ℓ n} → ∣ X ∣ ≡ ∣ Y ∣ → X ≡ Y n-path f i .∣_∣ = f i n-path {n = n} {X} {Y} f i .is-tr = is-prop→pathp (λ i → is-hlevel-is-prop {A = f i} n) (X .is-tr) (Y .is-tr) i n-ua : {n : Nat} {X Y : n-Type ℓ n} → ∣ X ∣ ≃ ∣ Y ∣ → X ≡ Y n-ua f = n-path (ua f) n-univalence : {n : Nat} {X Y : n-Type ℓ n} → (∣ X ∣ ≃ ∣ Y ∣) ≃ (X ≡ Y) n-univalence {n = n} {X} {Y} = n-ua , is-iso→is-equiv isic where inv : ∀ {Y} → X ≡ Y → ∣ X ∣ ≃ ∣ Y ∣ inv p = path→equiv (ap ∣_∣ p) linv : ∀ {Y} → is-left-inverse (inv {Y}) n-ua linv x = Σ-prop-path is-equiv-is-prop (funext λ x → transport-refl _) rinv : ∀ {Y} → is-right-inverse (inv {Y}) n-ua rinv = J (λ y p → n-ua (inv p) ≡ p) path where path : n-ua (inv {X} refl) ≡ refl path i j .∣_∣ = ua.ε {A = ∣ X ∣} refl i j path i j .is-tr = is-prop→squarep (λ i j → is-hlevel-is-prop {A = ua.ε {A = ∣ X ∣} refl i j} n) (λ j → X .is-tr) (λ j → n-ua {X = X} {Y = X} (path→equiv refl) j .is-tr) (λ j → X .is-tr) (λ j → X .is-tr) i j isic : is-iso n-ua isic = iso inv rinv (linv {Y})
Since h-levels are closed under equivalence, and we already have an upper bound on the h-level of when is an we know that is a
n-Type-is-hlevel : ∀ n → is-hlevel (n-Type ℓ n) (suc n) n-Type-is-hlevel zero x y = n-ua ((λ _ → y .is-tr .centre) , is-contr→is-equiv (x .is-tr) (y .is-tr)) n-Type-is-hlevel (suc n) x y = Equiv→is-hlevel (suc n) (n-univalence e⁻¹) (≃-is-hlevel (suc n) (x .is-tr) (y .is-tr))
For 1-categorical mathematics, the important h-levels are the propositions and the sets, so they get short names:
Set : ∀ ℓ → Type (lsuc ℓ) Set ℓ = n-Type ℓ 2 Prop : ∀ ℓ → Type (lsuc ℓ) Prop ℓ = n-Type ℓ 1
¬Set-is-prop : ¬ is-prop (Set ℓ) ¬Set-is-prop prop = lower $ transport (ap ∣_∣ (prop (el (Lift _ ⊤) (hlevel 2)) (el (Lift _ ⊥) (hlevel 2)))) (lift tt)
n-Type-square : ∀ {ℓ} {n} → {w x y z : n-Type ℓ n} → {p : x ≡ w} {q : x ≡ y} {s : w ≡ z} {r : y ≡ z} → Square (ap ∣_∣ p) (ap ∣_∣ q) (ap ∣_∣ s) (ap ∣_∣ r) → Square p q s r n-Type-square sq i j .∣_∣ = sq i j n-Type-square {p = p} {q} {s} {r} sq i j .is-tr = is-prop→squarep (λ i j → is-hlevel-is-prop {A = sq i j} _) (ap is-tr p) (ap is-tr q) (ap is-tr s) (ap is-tr r) i j