module Data.Nat.DivMod where
Natural divisionπ
This module implements the basics of the theory of
division (not divisibility, see there) for the
natural numbers. In particular, we define what it means to divide in the
naturals (the type DivMod
), and implement a division
procedure that works for positive denominators.
The result of division isnβt a single number, but rather a pair of numbers such that The number is the quotient and the number is the remainder
record DivMod (a b : Nat) : Type where constructor divmod field quot : Nat rem : Nat .quotient : a β‘ quot * b + rem .smaller : rem < b
The easy case is to divide zero by anything, in which case the result is zero with remainder zero. The more interesting case comes when we have some successor, and we want to divide it.
module _ where private -- This is a nice explanation of the division algorithm but it ends up -- being extremely slow when compared to the builtins. So we define the -- nice prosaic version first, then define the fast version hidden..
divide-pos : β a b β .β¦ _ : Positive b β¦ β DivMod a b divide-pos zero (suc b) = divmod 0 0 refl (sβ€s 0β€x)
It suffices to assume β since is smaller than β that we have already computed numbers with Since the ordering on is trichotomous, we can proceed by cases on whether
divide-pos (suc a) b with divide-pos a b divide-pos (suc a) b | divmod q' r' p s with β€-split (suc r') b
First, suppose that i.e., can serve as a remainder for the division of In that case, we have our divisor! It remains to show, by a slightly annoying computation, that
divide-pos (suc a) b | divmod q' r' p s | inl r'+1<b = divmod q' (suc r') (ap suc p β sym (+-sucr (q' * b) r')) r'+1<b
The other case β that in which β is more interesting. Then, rather than incrementing the remainder, our remainder has βoverflownβ, and we have to increment the quotient instead. We take, in this case, and which works out because ( and) of some arithmetic. See for yourself:
divide-pos (suc a) (suc b') | divmod q' r' p s | inr (inr r'+1=b) = divmod (suc q') 0 ( suc a β‘β¨ ap suc p β©β‘ suc (q' * (suc b') + r') β‘Λβ¨ ap (Ξ» e β suc (q' * e + r')) r'+1=b β©β‘Λ suc (q' * (suc r') + r') β‘β¨ nat! β©β‘ suc (r' + q' * (suc r') + zero) β‘β¨ ap (Ξ» e β e + q' * e + 0) r'+1=b β©β‘ (suc b') + q' * (suc b') + 0 β ) (sβ€s 0β€x)
Note that we actually have one more case to consider β or rather, discard β that in which Itβs impossible because, by the definition of division, we have meaning
divide-pos (suc a) (suc b') | divmod q' r' p s | inr (inl b<r'+1) = absurd (<-not-equal b<r'+1 (β€-antisym (β€-sucr (β€-peel b<r'+1)) (recover s)))
As a finishing touch, we define short operators to produce the result
of applying divide-pos
to a pair of
numbers. Note that the procedure above only works when the denominator
is nonzero, so we have a degree of freedom when defining
and
The canonical choice is to yield
in both cases.
_%_ : Nat β Nat β Nat a % zero = zero a % suc b = divide-pos a (suc b) .DivMod.rem _/β_ : Nat β Nat β Nat a /β zero = zero a /β suc b = divide-pos a (suc b) .DivMod.quot is-divmod : β x y β .β¦ _ : Positive y β¦ β x β‘ (x /β y) * y + x % y is-divmod x (suc y) with divide-pos x (suc y) ... | divmod q r Ξ± Ξ² = recover Ξ± x%y<y : β x y β .β¦ _ : Positive y β¦ β (x % y) < y x%y<y x (suc y) with divide-pos x (suc y) ... | divmod q r Ξ± Ξ² = recover Ξ²
With this, we can decide whether two numbers divide each other by checking whether the remainder is zero!
mod-helper : (k m n j : Nat) β Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j div-helper : (k m n j : Nat) β Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN NATDIVSUCAUX div-helper #-} {-# BUILTIN NATMODSUCAUX mod-helper #-} -- _ = {! mod-helper 0 0 4294967296 2 !} _/β_ : (d1 d2 : Nat) .β¦ _ : Positive d2 β¦ β Nat d1 /β suc d2 = div-helper 0 d2 d1 d2 _%_ : (d1 d2 : Nat) .β¦ _ : Positive d2 β¦ β Nat d1 % suc d2 = mod-helper 0 d2 d1 d2 infixl 9 _/β_ _%_ abstract private div-mod-lemma : β am ad d n β am + ad * suc (am + n) + d β‘ mod-helper am (am + n) d n + div-helper ad (am + n) d n * suc (am + n) div-mod-lemma am ad zero n = +-zeror _ div-mod-lemma am ad (suc d) zero rewrite Idβpath.from (+-zeror am) = +-sucr _ d β div-mod-lemma zero (suc ad) d am div-mod-lemma am ad (suc d) (suc n) rewrite Idβpath.from (+-sucr am n) = +-sucr _ d β div-mod-lemma (suc am) ad d n mod-le : β a d n β mod-helper a (a + n) d n β€ a + n mod-le a zero n = +-β€l a n mod-le a (suc d) zero = mod-le zero d (a + 0) mod-le a (suc d) (suc n) rewrite Idβpath.from (+-sucr a n) = mod-le (suc a) d n is-divmod : β x y β .β¦ _ : Positive y β¦ β x β‘ (x /β y) * y + x % y is-divmod x (suc y) = div-mod-lemma 0 0 x y β +-commutative (x % (suc y)) _ x%y<y : β x y β .β¦ _ : Positive y β¦ β (x % y) < y x%y<y x (suc y) = sβ€s (mod-le 0 x y) from-fast-mod : β d1 d2 .β¦ _ : Positive d2 β¦ β d1 % d2 β‘ 0 β d2 β£ d1 from-fast-mod d1 d2 p = fibreββ£ (d1 /β d2 , sym (is-divmod d1 d2 β ap (d1 /β d2 * d2 +_) p β +-zeror _)) divide-pos : β a b β .β¦ _ : Positive b β¦ β DivMod a b divide-pos a b = divmod (a /β b) (a % b) (is-divmod a b) (x%y<y a b)
instance Dec-β£ : β {n m} β Dec (n β£ m) Dec-β£ {zero} {m} = m β‘? 0 Dec-β£ n@{suc _} {m} with divide-pos m n ... | divmod q 0 Ξ± Ξ² = yes (q , sym (+-zeror _) β sym (recover Ξ±)) ... | divmod q r@(suc _) Ξ± Ξ² = no Ξ» (q' , p) β let nβ£r : (q' - q) * n β‘ r nβ£r = monus-distribr q' q n β sym (monus-swapl _ _ _ (sym (p β recover Ξ±))) in <-β€-asym (recover Ξ²) (mβ£snβmβ€sn (q' - q , recover nβ£r))