module Data.Sum.Base where
Sum typesπ
Sum types are one of the fundamental ingredients of type theory. They play a dual role to the product type; if products allow us to state that we have elements of two types simultaneously, sum types allow us to state that we have an element of one of two types.
We use the notation A β B
to hint at this typeβs
set-theoretic analog: the disjoint union.
infixr 3 _β_ data _β_ {a b} (A : Type a) (B : Type b) : Type (a β b) where inl : A β A β B inr : B β A β B
Universal propertiesπ
One of the most important things about sum types is the following
property: given two functions A β C
and B β C
,
we can construct a function A β B β C
.
[_,_] : (A β C) β (B β C) β (A β B) β C [ f , g ] (inl x) = f x [ f , g ] (inr x) = g x
infix 0 ifβΊ_then_else_ ifβΊ_then_else_ : A β B β C β C β C ifβΊ inl _ then y else n = y ifβΊ inr _ then y else n = n
Furthermore, this function is βuniversalβ in the following sense: if
we have some function h : A β B β C
that behaves like
f
when provided an inl a
, and like
g
when provided inr b
, then h
must be identical to [ f , g ]
.
[]-unique : β {f : A β C} {g : B β C} {h} β f β‘ h β inl β g β‘ h β inr β [ f , g ] β‘ h []-unique p q = funext Ξ» { (inl x) i β p i x ; (inr x) i β q i x }
We also have the following eta law. In general, eta
laws relate the introduction forms with the
elimination forms. The most familiar eta law is the one for
functions: Ξ» x β (f x)
is the same as f
. In
agda, the eta law for functions requires no proof, it holds by
definition. However, the same cannot be said for sum types, so we prove
it here.
[]-Ξ· : β (x : A β B) β [ inl , inr ] x β‘ x []-Ξ· (inl x) = refl []-Ξ· (inr x) = refl
This universal property can be strengthened to characterising the
space of dependent functions out of the disjoint union: A
dependent function (x : A β B) β P x
is the product of
functions covering the left and right cases.
β-universal : β {A : Type a} {B : Type b} {C : A β B β Type c} β ((x : A β B) β C x) β ( ((x : A) β C (inl x)) Γ ((y : B) β C (inr y))) β-universal {A = A} {B} {P} = IsoβEquiv the-iso where the-iso : Iso _ _
For βsplittingβ a dependent function from the coproduct, we can compose it with either of the constructors to restrict to a function on that factor:
the-iso .fst f = (Ξ» x β f (inl x)) , (Ξ» x β f (inr x))
Similarly, given a pair of functions, we can do a case split on the coproduct to decide which function to apply:
the-iso .snd .is-iso.inv (f , g) (inl x) = f x the-iso .snd .is-iso.inv (f , g) (inr x) = g x the-iso .snd .is-iso.rinv x = refl the-iso .snd .is-iso.linv f i (inl x) = f (inl x) the-iso .snd .is-iso.linv f i (inr x) = f (inr x)
Transformationsπ
Letβs move away from the abstract nonsense of universal properties for a bit, and cleanse our pallate with some small helper functions for mapping between sum types.
β-map : (A β C) β (B β D) β A β B β C β D β-map f g (inl a) = inl (f a) β-map f g (inr b) = inr (g b) β-mapl : (A β C) β A β B β C β B β-mapl f = β-map f id β-mapr : (B β C) β A β B β A β C β-mapr f = β-map id f
Closure under equivalencesπ
Univalence automatically
implies that all type formers respect equivalences. However, the proof
using univalence is restricted to types of the same universe level.
Thus, β-ap
: Coproducts respect
equivalences in both arguments, across levels.
β-ap : A β B β C β D β (A β C) β (B β D) β-ap (f , f-eqv) (g , g-eqv) = IsoβEquiv cong where f-iso = is-equivβis-iso f-eqv g-iso = is-equivβis-iso g-eqv cong : Iso _ _ cong .fst = β-map f g cong .snd .is-iso.inv (inl x) = inl (f-iso .is-iso.inv x) cong .snd .is-iso.inv (inr x) = inr (g-iso .is-iso.inv x) cong .snd .is-iso.rinv (inl x) = ap inl (f-iso .is-iso.rinv x) cong .snd .is-iso.rinv (inr x) = ap inr (g-iso .is-iso.rinv x) cong .snd .is-iso.linv (inl x) = ap inl (f-iso .is-iso.linv x) cong .snd .is-iso.linv (inr x) = ap inr (g-iso .is-iso.linv x) β-apl : A β B β (A β C) β (B β C) β-apl f = β-ap f (id , id-equiv) β-apr : B β C β (A β B) β (A β C) β-apr f = β-ap (id , id-equiv) f
Algebraic propertiesπ
Considered as an algebraic operator on types, the coproduct satisfies many of the same properties of addition. Specifically, when restricted to finite types, the coproduct is exactly the same as addition.
β-comm : (A β B) β (B β A) β-comm = IsoβEquiv i where i : Iso _ _ i .fst (inl x) = inr x i .fst (inr x) = inl x i .snd .is-iso.inv (inl x) = inr x i .snd .is-iso.inv (inr x) = inl x i .snd .is-iso.rinv (inl x) = refl i .snd .is-iso.rinv (inr x) = refl i .snd .is-iso.linv (inl x) = refl i .snd .is-iso.linv (inr x) = refl β-assoc : ((A β B) β C) β (A β (B β C)) β-assoc = IsoβEquiv i where i : Iso _ _ i .fst (inl (inl x)) = inl x i .fst (inl (inr x)) = inr (inl x) i .fst (inr x) = inr (inr x) i .snd .is-iso.inv (inl x) = inl (inl x) i .snd .is-iso.inv (inr (inl x)) = inl (inr x) i .snd .is-iso.inv (inr (inr x)) = inr x i .snd .is-iso.rinv (inl x) = refl i .snd .is-iso.rinv (inr (inl x)) = refl i .snd .is-iso.rinv (inr (inr x)) = refl i .snd .is-iso.linv (inl (inl x)) = refl i .snd .is-iso.linv (inl (inr x)) = refl i .snd .is-iso.linv (inr x) = refl β-zeror : (A β β₯) β A β-zeror .fst (inl x) = x β-zeror .snd .is-eqv y .centre = inl y , refl β-zeror .snd .is-eqv y .paths (inl x , p) i = inl (p (~ i)) , Ξ» j β p (~ i β¨ j) β-zerol : (β₯ β A) β A β-zerol .fst (inr x) = x β-zerol .snd .is-eqv y .centre = inr y , refl β-zerol .snd .is-eqv y .paths (inr x , p) i = inr (p (~ i)) , Ξ» j β p (~ i β¨ j) β-Γ-distribute : ((A β B) Γ C) β ((A Γ C) β (B Γ C)) β-Γ-distribute = IsoβEquiv i where i : Iso _ _ i .fst (inl x , y) = inl (x , y) i .fst (inr x , y) = inr (x , y) i .snd .is-iso.inv (inl (x , y)) = inl x , y i .snd .is-iso.inv (inr (x , y)) = inr x , y i .snd .is-iso.rinv (inl x) = refl i .snd .is-iso.rinv (inr x) = refl i .snd .is-iso.linv (inl x , _) = refl i .snd .is-iso.linv (inr x , _) = refl