module Cat.Instances.Graphs where
The category of graphs🔗
A graph (really, an 1) is given by a set of vertices and, for each pair of elements a set of edges from to That’s it: a set and a family of sets over
record Graph (o ℓ : Level) : Type (lsuc o ⊔ lsuc ℓ) where no-eta-equality field Vertex : Type o Edge : Vertex → Vertex → Type ℓ Vertex-is-set : is-set Vertex Edge-is-set : ∀ {x y} → is-set (Edge x y)
open Graph open hlevel-projection instance Underlying-Graph : Underlying (Graph o ℓ) Underlying-Graph = record { ⌞_⌟ = Graph.Vertex } hlevel-proj-vertex : hlevel-projection (quote Graph.Vertex) hlevel-proj-vertex .has-level = quote Graph.Vertex-is-set hlevel-proj-vertex .get-level _ = pure (quoteTerm (suc (suc zero))) hlevel-proj-vertex .get-argument (_ ∷ _ ∷ c v∷ _) = pure c {-# CATCHALL #-} hlevel-proj-vertex .get-argument _ = typeError [] hlevel-proj-edge : hlevel-projection (quote Graph.Edge) hlevel-proj-edge .has-level = quote Graph.Edge-is-set hlevel-proj-edge .get-level _ = pure (quoteTerm (suc (suc zero))) hlevel-proj-edge .get-argument (_ ∷ _ ∷ c v∷ _) = pure c {-# CATCHALL #-} hlevel-proj-edge .get-argument _ = typeError []
A graph homomorphism consists of a mapping of vertices along with a mapping of edges
record Graph-hom (G : Graph o ℓ) (H : Graph o' ℓ') : Type (o ⊔ o' ⊔ ℓ ⊔ ℓ') where no-eta-equality field vertex : ⌞ G ⌟ → ⌞ H ⌟ edge : ∀ {x y} → G .Edge x y → H .Edge (vertex x) (vertex y)
private variable G H K : Graph o ℓ open Graph-hom unquoteDecl H-Level-Graph-hom = declare-record-hlevel 2 H-Level-Graph-hom (quote Graph-hom) Graph-hom-pathp : {G : I → Graph o ℓ} {H : I → Graph o' ℓ'} → {f : Graph-hom (G i0) (H i0)} {g : Graph-hom (G i1) (H i1)} → (p0 : ∀ (x : ∀ i → G i .Vertex) → PathP (λ i → H i .Vertex) (f .vertex (x i0)) (g .vertex (x i1))) → (p1 : ∀ {x y : ∀ i → G i .Vertex} → (e : ∀ i → G i .Edge (x i) (y i)) → PathP (λ i → H i .Edge (p0 x i) (p0 y i)) (f .edge (e i0)) (g .edge (e i1))) → PathP (λ i → Graph-hom (G i) (H i)) f g Graph-hom-pathp {G = G} {H = H} {f = f} {g = g} p0 p1 = pathp where vertex* : I → Type _ vertex* i = (G i) .Vertex edge* : (i : I) → vertex* i → vertex* i → Type _ edge* i x y = (G i) .Edge x y pathp : PathP (λ i → Graph-hom (G i) (H i)) f g pathp i .vertex x = p0 (λ j → coe vertex* i j x) i pathp i .edge {x} {y} e = p1 {x = λ j → coe vertex* i j x} {y = λ j → coe vertex* i j y} (λ j → coe (λ j → edge* j (coe vertex* i j x) (coe vertex* i j y)) i j (e* j)) i where x* y* : (j : I) → vertex* i x* j = coei→i vertex* i x (~ j ∨ i) y* j = coei→i vertex* i y (~ j ∨ i) e* : (j : I) → edge* i (coe vertex* i i x) (coe vertex* i i y) e* j = comp (λ j → edge* i (x* j) (y* j)) ((~ i ∧ ~ j) ∨ (i ∧ j)) λ where k (k = i0) → e k (i = i0) (j = i0) → e k (i = i1) (j = i1) → e Graph-hom-path : {f g : Graph-hom G H} → (p0 : ∀ x → f .vertex x ≡ g .vertex x) → (p1 : ∀ {x y} → (e : Graph.Edge G x y) → PathP (λ i → Graph.Edge H (p0 x i) (p0 y i)) (f .edge e) (g .edge e)) → f ≡ g Graph-hom-path {G = G} {H = H} p0 p1 = Graph-hom-pathp {G = λ _ → G} {H = λ _ → H} (λ x i → p0 (x i) i) (λ e i → p1 (e i) i) instance Funlike-Graph-hom : Funlike (Graph-hom G H) ⌞ G ⌟ λ _ → ⌞ H ⌟ Funlike-Graph-hom .Funlike._·_ = vertex Graph-hom-id : {G : Graph o ℓ} → Graph-hom G G Graph-hom-id .vertex v = v Graph-hom-id .edge e = e
Graphs and graph homomorphisms can be organized into a category
Graphs : ∀ o ℓ → Precategory (lsuc (o ⊔ ℓ)) (o ⊔ ℓ) Graphs o ℓ .Precategory.Ob = Graph o ℓ Graphs o ℓ .Precategory.Hom = Graph-hom Graphs o ℓ .Precategory.Hom-set _ _ = hlevel 2 Graphs o ℓ .Precategory.id = Graph-hom-id Graphs o ℓ .Precategory._∘_ f g .vertex v = f .vertex (g .vertex v) Graphs o ℓ .Precategory._∘_ f g .edge e = f .edge (g .edge e) Graphs o ℓ .Precategory.idr _ = Graph-hom-path (λ _ → refl) (λ _ → refl) Graphs o ℓ .Precategory.idl _ = Graph-hom-path (λ _ → refl) (λ _ → refl) Graphs o ℓ .Precategory.assoc _ _ _ = Graph-hom-path (λ _ → refl) (λ _ → refl)
open Functor open _=>_ module _ {o ℓ : Level} where module Graphs = Cat.Reasoning (Graphs o ℓ) graph-iso-is-ff : {x y : Graph o ℓ} (h : Graphs.Hom x y) → Graphs.is-invertible h → ∀ {x y} → is-equiv (h .edge {x} {y}) graph-iso-is-ff {x} {y} h inv {s} {t} = is-iso→is-equiv (iso from ir il) where module h = Graphs.is-invertible inv from : ∀ {s t} → y .Edge (h · s) (h · t) → x .Edge s t from e = subst₂ (x .Edge) (ap vertex h.invr · _) (ap vertex h.invr · _) (h.inv .edge e) ir : is-right-inverse from (h .edge) ir e = let lemma = J₂ (λ s'' t'' p q → ∀ e → h .edge (subst₂ (x .Edge) p q e) ≡ subst₂ (y .Edge) (ap· h p) (ap· h q) (h .edge e)) (λ e → ap (h .edge) (transport-refl _) ∙ sym (transport-refl _)) in lemma _ _ (h.inv .edge e) ∙∙ ap₂ (λ p q → subst₂ (y .Edge) {b' = h .vertex t} p q (h .edge (h.inv .edge e))) prop! prop! ∙∙ from-pathp (λ i → h.invl i .edge e) il : is-left-inverse from (h .edge) il e = from-pathp λ i → h.invr i .edge e Graph-path : ∀ {x y : Graph o ℓ} → (p : x .Vertex ≡ y .Vertex) → (PathP (λ i → p i → p i → Type ℓ) (x .Edge) (y .Edge)) → x ≡ y Graph-path {x = x} {y} p q i .Vertex = p i Graph-path {x = x} {y} p q i .Edge = q i Graph-path {x = x} {y} p q i .Vertex-is-set = is-prop→pathp (λ i → is-hlevel-is-prop {A = p i} 2) (x .Vertex-is-set) (y .Vertex-is-set) i Graph-path {x = x} {y} p q i .Edge-is-set {s} {t} = is-prop→pathp (λ i → Π-is-hlevel 1 λ x → Π-is-hlevel 1 λ y → is-hlevel-is-prop {A = q i x y} 2) (λ a b → x .Edge-is-set {a} {b}) (λ a b → y .Edge-is-set {a} {b}) i s t graph-path : ∀ {x y : Graph o ℓ} (h : x Graphs.≅ y) → x ≡ y graph-path {x = x} {y = y} h = Graph-path (ua v) (λ i → E i ) module graph-path where module h = Graphs._≅_ h v : ⌞ x ⌟ ≃ ⌞ y ⌟ v = record { fst = h.to .vertex ; snd = is-iso→is-equiv (iso (h.from .vertex) (happly (ap vertex h.invl)) (happly (ap vertex h.invr))) } E : (i : I) → ua v i → ua v i → Type ℓ E i s t = Glue (y .Edge (unglue s) (unglue t)) (λ where (i = i0) → x .Edge s t , _ , graph-iso-is-ff h.to (Graphs.iso→invertible h) (i = i1) → y .Edge s t , _ , id-equiv)
In particular, is a univalent category.
Graphs-is-category : is-category (Graphs o ℓ) Graphs-is-category .to-path = graph-path Graphs-is-category .to-path-over {a} {b} p = Graphs.≅-pathp _ _ $ Graph-hom-pathp pv pe where open graph-path p pv : (h : I → a .Vertex) → PathP (λ i → ua v i) (h i0) (h.to .vertex (h i1)) pv h i = ua-glue v i (λ { (i = i0) → h i }) (inS (h.to .vertex (h i))) pe : {x y : I → a .Vertex} (e : ∀ i → a .Edge (x i) (y i)) → PathP (λ i → graph-path p i .Edge (pv x i) (pv y i)) (e i0) (h.to .edge (e i1)) pe {x} {y} e i = attach (∂ i) (λ { (i = i0) → _ ; (i = i1) → _ }) (inS (h.to .edge (e i)))
Graphs as presheaves🔗
A graph may equivalently be seen as a diagram
of sets.
That is, a graph 2 is the same as functor from the walking parallel arrows category to Furthermore, presheaves and functors to are equivalent as this category is self-dual.
graph→presheaf : Functor (Graphs o ℓ) (PSh (o ⊔ ℓ) ·⇇·) graph→presheaf .F₀ G = Fork {a = el! $ Σ[ s ∈ G .Vertex ] Σ[ t ∈ G .Vertex ] G .Edge s t } {el! $ Lift ℓ ⌞ G ⌟} (lift ⊙ fst) (lift ⊙ fst ⊙ snd) graph→presheaf .F₁ f = Fork-nt {u = λ (s , t , e) → f .vertex s , f .vertex t , f .edge e } {v = λ { (lift v) → lift (f · v) } } refl refl graph→presheaf .F-id = Nat-path λ { true → refl ; false → refl } graph→presheaf .F-∘ G H = Nat-path λ { true → refl ; false → refl } g→p-is-ff : is-fully-faithful graph→presheaf g→p-is-ff {x = x} {y = y} = is-iso→is-equiv (iso from ir il) where from : graph→presheaf · x => graph→presheaf · y → Graph-hom x y from h .vertex v = h .η true (lift v) .lower from h .edge e = let (s' , t' , e') = h .η false (_ , _ , e) ps = ap lower (sym (h .is-natural false true false $ₚ (_ , _ , e))) pt = ap lower (sym (h .is-natural false true true $ₚ (_ , _ , e))) in subst₂ (y .Edge) ps pt e' ir : is-right-inverse from (graph→presheaf .F₁) ir h = ext λ where true x → refl false (s , t , e) → let ps = ap lower (h .is-natural false true false $ₚ (s , t , e)) pt = ap lower (h .is-natural false true true $ₚ (s , t , e)) s' , t' , e' = h .η false (_ , _ , e) in Σ-pathp ps (Σ-pathp pt λ i → coe1→i (λ j → y .Edge (ps j) (pt j)) i e') il : is-left-inverse from (graph→presheaf .F₁) il h = Graph-hom-path (λ _ → refl) (λ e → transport-refl _) private module _ {ℓ : Level} where presheaf→graph : ⌞ PSh ℓ ·⇇· ⌟ → Graph ℓ ℓ presheaf→graph F = g where module F = Functor F g : Graph ℓ ℓ g .Vertex = ⌞ F · true ⌟ g .Edge s d = Σ[ e ∈ ∣ F.₀ false ∣ ] F.₁ false e ≡ s × F.₁ true e ≡ d g .Vertex-is-set = hlevel 2 g .Edge-is-set = hlevel 2 open is-precat-iso open is-iso g→p-is-iso : is-precat-iso (graph→presheaf {ℓ} {ℓ}) g→p-is-iso .has-is-ff = g→p-is-ff g→p-is-iso .has-is-iso = is-iso→is-equiv F₀-iso where F₀-iso : is-iso (graph→presheaf .F₀) F₀-iso .inv = presheaf→graph F₀-iso .rinv F = Functor-path (λ { false → n-ua (Iso→Equiv ( (λ (_ , _ , x , _ , _) → x) , iso (λ s → _ , _ , s , refl , refl) (λ _ → refl) (λ (_ , _ , s , p , q) i → p i , q i , s , (λ j → p (i ∧ j)) , (λ j → q (i ∧ j))))) ; true → n-ua (lower , (is-iso→is-equiv (iso lift (λ _ → refl) (λ _ → refl)))) }) λ { {false} {false} e → ua→ λ _ → path→ua-pathp _ (sym (F .F-id {false} · _)) ; {false} {true} false → ua→ λ (_ , _ , s , p , q) → path→ua-pathp _ (sym p) ; {false} {true} true → ua→ λ (_ , _ , s , p , q) → path→ua-pathp _ (sym q) ; {true} {true} e → ua→ λ _ → path→ua-pathp _ (sym (F .F-id {true} · _)) } F₀-iso .linv G = let eqv : Lift ℓ ⌞ G ⌟ ≃ ⌞ G ⌟ eqv = Lift-≃ ΣE = Σ[ s ∈ G ] Σ[ t ∈ G ] G .Edge s t E' : Lift ℓ ⌞ G ⌟ → Lift ℓ ⌞ G ⌟ → Type _ E' x y = Σ[ (s , t , e) ∈ ΣE ] (lift s ≡ x × lift t ≡ y) from : (u v : ⌞ G ⌟) → E' (lift u) (lift v) → G .Edge u v from u v ((u' , v' , e) , p , q) = subst₂ (G .Edge) (ap lower p) (ap lower q) e frome : (u v : ⌞ G ⌟) → is-iso (from u v) frome u v = iso (λ e → ((_ , _ , e) , refl , refl)) (λ x → transport-refl _) (λ ((u' , v' , e) , p , q) i → ( p (~ i) .lower , q (~ i) .lower , coe0→i (λ i → G .Edge (p i .lower) (q i .lower)) (~ i) e ) , (λ j → p (~ i ∨ j)) , (λ j → q (~ i ∨ j))) in Graph-path (ua eqv) λ i x y → Glue (G .Edge (ua-unglue eqv i x) (ua-unglue eqv i y)) λ where (i = i0) → E' x y , from (x .lower) (y .lower) , is-iso→is-equiv (frome _ _) (i = i1) → G .Edge x y , _ , id-equiv
Thus, are presheaves and are thereby a topos.
graphs-are-presheaves : Equivalence (Graphs ℓ ℓ) (PSh ℓ ·⇇·) graphs-are-presheaves = eqv where open Equivalence eqv : Equivalence (Graphs ℓ ℓ) (PSh ℓ ·⇇·) eqv .To = graph→presheaf eqv .To-equiv = is-precat-iso→is-equivalence g→p-is-iso
The underlying graph of a strict category🔗
Note that every strict category has an underlying graph, where the vertices are given by objects, and edges by morphisms. Moreover, functors between strict categories give rise to graph homomorphisms between underlying graphs. This gives rise to a functor from the category of strict categories to the category of graphs.
Strict-cats↪Graphs : Functor (Strict-cats o ℓ) (Graphs o ℓ) Strict-cats↪Graphs .F₀ (C , C-strict) .Vertex = Precategory.Ob C Strict-cats↪Graphs .F₀ (C , C-strict) .Edge = Precategory.Hom C Strict-cats↪Graphs .F₀ (C , C-strict) .Vertex-is-set = C-strict Strict-cats↪Graphs .F₀ (C , C-strict) .Edge-is-set = Precategory.Hom-set C _ _ Strict-cats↪Graphs .F₁ F .vertex = F .F₀ Strict-cats↪Graphs .F₁ F .edge = F .F₁ Strict-cats↪Graphs .F-id = Graph-hom-path (λ _ → refl) (λ _ → refl) Strict-cats↪Graphs .F-∘ F G = Graph-hom-path (λ _ → refl) (λ _ → refl)
The underlying graph functor is faithful, as functors are graph homomorphisms with extra properties.
Strict-cats↪Graphs-faithful : is-faithful (Strict-cats↪Graphs {o} {ℓ}) Strict-cats↪Graphs-faithful p = Functor-path (λ x i → p i .vertex x) (λ e i → p i .edge e)