module Cat.Functor.Equivalence.Path where
Paths between categories🔗
We know that, in a univalent category, paths between objects are the same thing as isomorphisms. A natural question to follow up is: what are the paths between univalent categories? We prove that the space of functors whose mappings on objects and on morphisms are both equivalences (“isomorphisms of precategories”) is an identity system on the space of precategories.
The first thing we need to establish is that an isomorphism of
precategories induces a path between its domain and codomain categories.
This is essentially an application of univalence, done in direct cubical
style. In particular, we use Glue directly rather than ua
to construct the path between Hom
families.
Precategory-path : ∀ {o ℓ} {C D : Precategory o ℓ} (F : Functor C D) → is-precat-iso F → C ≡ D Precategory-path {o = o} {ℓ} {C} {D} F p = path where module C = Precategory C module D = Precategory D open is-precat-iso p renaming (has-is-iso to ob≃ ; has-is-ff to hom≃)
By assumption,
action on objects
is an equivalence, so by univalence it induces an equivalence
The path between Hom
-sets is
slightly more complicated. It is, essentially, the dashed line in the
diagram
obl : ∀ i → Type o obl i = ua (F .F₀ , ob≃) i sys : ∀ i (x y : obl i) → Partial (i ∨ ~ i) _ sys i x y (i = i0) = C.Hom x y , F .F₁ , hom≃ sys i x y (i = i1) = D.Hom x y , (λ x → x) , id-equiv hom : PathP (λ i → obl i → obl i → Type ℓ) C.Hom D.Hom hom i x y = Glue (D.Hom (unglue (i ∨ ~ i) x) (unglue (i ∨ ~ i) y)) (sys i x y)
Note that
is a term in
which evaluates to
when
(and thus
has type
and
when
(and thus
has type
so that the system described above can indeed be built. The introduction
rule for hom
is hom-glue
:
If we have a partial element
together with an element
of base type satisfying definitionally
we may glue
along
to get an element of
hom-glue : ∀ i (x y : obl i) → (f : PartialP {a = ℓ} (~ i) λ { (i = i0) → C.Hom x y }) → (g : D.Hom (unglue (i ∨ ~ i) x) (unglue (i ∨ ~ i) y) [ (~ i) ↦ (λ { (i = i0) → F .F₁ (f 1=1) }) ]) → hom i x y hom-glue i x y f g = glue-inc _ {Tf = sys i x y} (λ { (i = i0) → f 1=1 ; (i = i1) → outS g }) (inS (outS g))
To obtain these definitional extensions of a morphism in C, we use homogeneous composition, together with the functor laws. For example, below, we obtain a line which definitionally extends on the left and by gluing against the proof that preserves identity.
idh : ∀ i x → hom i x x idh i x = hom-glue i x x (λ { (i = i0) → C.id }) (inS (hcomp (∂ i) λ where j (i = i0) → F .F-id (~ j) j (i = i1) → D.id j (j = i0) → D.id)) circ : ∀ i x y z → hom i y z → hom i x y → hom i x z circ i x y z f g = hom-glue i x z (λ { (i = i0) → f C.∘ g }) (inS (hcomp (∂ i) λ where j (i = i0) → F .F-∘ f g (~ j) j (i = i1) → f D.∘ g j (j = i0) → unglue (i ∨ ~ i) f D.∘ unglue (i ∨ ~ i) g))
The last trick is extending a proposition
along the line
in a way that agrees with the original categories. We do this by piecing
together a square whose sides are the witness that
is a proposition, and where the base is given by spreading (coe0→i
) the proposition
from
throughout the line. We only include the case for Hom-set
since it is
instructive and the other laws are not any more enlightening.
hom-is-set : ∀ i a b → is-set (hom i a b) hom-is-set i a b = hcomp (∂ i) λ where k (k = i0) → extended k (i = i0) → is-hlevel-is-prop 2 extended (C.Hom-set a b) k k (i = i1) → is-hlevel-is-prop 2 extended (D.Hom-set a b) k where extended = coe0→i (λ i → (a b : obl i) → is-set (hom i a b)) i C.Hom-set a b open Precategory path : C ≡ D path i .Ob = obl i path i .Hom = hom i path i .Hom-set a b = hom-is-set i a b path i .id {x} = idh i x path i ._∘_ {x} {y} {z} f g = circ i x y z f g
path i .idr {x} {y} f = hcomp (∂ i) λ where k (k = i0) → extended k (i = i0) → C.Hom-set x y (f C.∘ C.id) f extended (C.idr f) k k (i = i1) → D.Hom-set x y (f D.∘ D.id) f extended (D.idr f) k where extended = coe0→i (λ i → (x y : obl i) (f : hom i x y) → circ i x x y f (idh i x) ≡ f) i (λ x y f → C.idr f) x y f path i .idl {x} {y} f = hcomp (∂ i) λ where k (k = i0) → extended k (i = i0) → C.Hom-set x y (C.id C.∘ f) f extended (C.idl f) k k (i = i1) → D.Hom-set x y (D.id D.∘ f) f extended (D.idl f) k where extended = coe0→i (λ i → (x y : obl i) (f : hom i x y) → circ i x y y (idh i y) f ≡ f) i (λ x y f → C.idl f) x y f path i .assoc {w} {x} {y} {z} f g h = hcomp (∂ i) λ where k (k = i0) → extended k (i = i0) → C.Hom-set w z (f C.∘ g C.∘ h) ((f C.∘ g) C.∘ h) extended (C.assoc f g h) k k (i = i1) → D.Hom-set w z (f D.∘ g D.∘ h) ((f D.∘ g) D.∘ h) extended (D.assoc f g h) k where extended = coe0→i (λ i → (w x y z : obl i) (f : hom i y z) (g : hom i x y) (h : hom i w x) → circ i w y z f (circ i w x y g h) ≡ circ i w x z (circ i x y z f g) h) i (λ _ _ _ _ f g h → C.assoc f g h) w x y z f g h
To conclude that isomorphisms of precategories are an identity
system, we must now prove that the operation Precategory-path
above
trivialises the isomorphism we started with. This is mostly
straightforward, but the proof that the action on morphisms is preserved
requires a boring calculation:
Precategory-identity-system : ∀ {o ℓ} → is-identity-system {A = Precategory o ℓ} (λ C D → Σ (Functor C D) is-precat-iso) (λ a → Id , iso id-equiv id-equiv) Precategory-identity-system .to-path (F , i) = Precategory-path F i Precategory-identity-system .to-path-over {C} {D} (F , i) = Σ-prop-pathp! $ Functor-pathp (λ p → path→ua-pathp _ (λ j → F.₀ (p j))) (λ {x} {y} → homs x y) where module C = Cat.Reasoning C module D = Cat.Reasoning D module F = Functor F homs : ∀ x y (r : ∀ j → C.Hom (x j) (y j)) → PathP _ _ _ homs x y f = to-pathp $ transport (λ i₁ → D.Hom (F.₀ (x i₁)) (F.₀ (y i₁))) (F.₁ (f i0)) ≡⟨ Hom-transport D (λ i → F.₀ (x i)) (λ i → F.₀ (y i)) (F.₁ (f i0)) ⟩≡ _ D.∘ F.₁ (f i0) D.∘ _ ≡⟨ ap D.to (ap-F₀-to-iso F (λ i → y i)) D.⟩∘⟨ (refl D.⟩∘⟨ ap D.from (ap-F₀-to-iso F (λ i → x i))) ⟩≡ F.₁ _ D.∘ F.₁ (f i0) D.∘ F.₁ _ ≡˘⟨ D.refl⟩∘⟨ F.F-∘ _ _ ⟩≡˘ (F.₁ _ D.∘ F.₁ (f i0 C.∘ _)) ≡˘⟨ F.F-∘ _ _ ⟩≡˘ F.₁ (_ C.∘ f i0 C.∘ _) ≡˘⟨ ap F.₁ (Hom-transport C (λ i → x i) (λ i → y i) (f i0)) ⟩≡˘ F.₁ (coe0→1 (λ z → C.Hom (x z) (y z)) (f i0)) ≡⟨ ap F.₁ (from-pathp (λ i → f i)) ⟩≡ F.₁ (f i1) ∎
Note that we did not need to concern ourselves with the actual witness that the functor is an isomorphism, since being an isomorphism is a proposition.
For univalent categories🔗
Now we want to characterise the space of paths between univalent categories, as a refinement of the identity system constructed above. There are two observations that will allow us to do this like magic:
Being univalent is a property of a precategory: Univalence is defined to mean that the relation is an identity system for the objects of and “being an identity system” is a property of a relation1
Between univalent categories, being an adjoint equivalence is a property of a functor, and it is logically equivalent to being an isomorphism of the underlying precategories.
Putting this together is a matter of piecing pre-existing lemmas together. The first half of the construction is by observing that the map (of types) which forgets univalence for a given category is an embedding, so that we may compute an identity system on univalent categories by pulling back that of precategories:
Category-identity-system-pre : ∀ {o ℓ} → is-identity-system {A = Σ (Precategory o ℓ) is-category} (λ C D → Σ (Functor (C .fst) (D .fst)) is-precat-iso) (λ a → Id , iso id-equiv id-equiv) Category-identity-system-pre = pullback-identity-system Precategory-identity-system (fst , (Subset-proj-embedding (λ x → is-identity-system-is-prop)))
Then, since the spaces of equivalences and isomorphisms are both defined as the total space of a predicate on the same types, it suffices to show that the predicates are equivalent pointwise, which follows by propositional extensionality and a tiny result to adjust an equivalence into an isomorphism.
Category-identity-system : ∀ {o ℓ} → is-identity-system {A = Σ (Precategory o ℓ) is-category} (λ C D → Σ (Functor (C .fst) (D .fst)) is-equivalence) (λ a → Id , Id-is-equivalence) Category-identity-system = transfer-identity-system Category-identity-system-pre (λ x y → Σ-ap-snd λ F → prop-ext (hlevel 1) (is-equivalence-is-prop (x .snd) F) is-precat-iso→is-equivalence (eqv→iso (x .snd) (y .snd) F))
To show that this equivalence sends “reflexivity” to “reflexivity”, all that matters is the functor (since being an equivalence is a proposition), and the functor is definitionally preserved.
(λ x → Σ-prop-path (is-equivalence-is-prop (x .snd)) refl)
where module _ {C D : Precategory _ _} (ccat : is-category C) (dcat : is-category D) (F : Functor C D) (eqv : is-equivalence F) where open is-precat-iso open is-equivalence
And now the aforementioned tiny result: All equivalences are fully faithful, and if both categories are univalent, the natural isomorphisms and provide the necessary paths for showing that is an equivalence of types.
eqv→iso : is-precat-iso F eqv→iso .has-is-ff = is-equivalence→is-ff F eqv eqv→iso .has-is-iso = is-iso→is-equiv λ where .is-iso.inv → eqv .F⁻¹ .F₀ .is-iso.rinv x → dcat .to-path $ isoⁿ→iso (F∘F⁻¹≅Id eqv) _ .is-iso.linv x → sym $ ccat .to-path $ isoⁿ→iso (Id≅F⁻¹∘F eqv) _
module _ {o ℓ} {C : Precategory o ℓ} {D : Precategory o ℓ} (ccat : is-category C) (dcat : is-category D) (F : Functor C D) (eqv : is-equivalence F) where eqv→path : C ≡ D eqv→path = ap fst (Category-identity-system .to-path {C , ccat} {D , dcat} (F , eqv))
Really, it’s a property of a pointed relation, but this does not make a difference here.↩︎