module Cat.Instances.StrictCat where
The category of strict categoriesπ
Recall that a precategory is said strict
if its space of objects is a Set
. While general
precategories are too homotopically interesting to fit into a Precategory
(because functor
spaces will not, in general, be h-sets), the strict categories
do form a precategory, which we denote
private unquoteDecl eqv = declare-record-iso eqv (quote Functor) Functor-is-set : β {o h} {C D : Precategory o h} β is-set (Ob D) β is-set (Functor C D) Functor-is-set {o = o} {h} {C} {D} dobset = Isoβis-hlevel! 2 eqv where instance Dob : H-Level (Ob D) 2 Dob = basic-instance 2 dobset
Strict-cats : β o h β Precategory _ _ Strict-cats o h .Ob = Ξ£[ C β Precategory o h ] (is-strict C) Strict-cats o h .Hom (C , _) (D , _) = Functor C D Strict-cats o h .id = Id Strict-cats o h ._β_ = _Fβ_ Strict-cats o h .idr _ = Functor-path (Ξ» _ β refl) Ξ» _ β refl Strict-cats o h .idl _ = Functor-path (Ξ» _ β refl) Ξ» _ β refl Strict-cats o h .assoc _ _ _ = Functor-path (Ξ» _ β refl) Ξ» _ β refl
This assembles into a Precategory
because the only bit
of a Functor
that doesnβt have a fixed
h-level is the object mapping; By asking that D
be a strict category, this fixes
the functors to be sets.
Strict-cats o h .Hom-set _ (D , dset) = Functor-is-set dset
Productsπ
We prove that Strict-cats
has products. This
is because
is
and h-levels are closed under products.
Strict-cats-products : {C D : Precategory o h} β (cob : is-set (Ob C)) (dob : is-set (Ob D)) β Product (Strict-cats o h) (C , cob) (D , dob) Strict-cats-products {C = C} {D = D} cob dob = prod where prod : Product (Strict-cats _ _) (C , cob) (D , dob) prod .apex = C ΓαΆ D , Γ-is-hlevel 2 cob dob prod .Οβ = Fst {C = C} {D = D} prod .Οβ = Snd {C = C} {D = D} prod .has-is-product .β¨_,_β© p q = Catβ¨ p , q β©Cat prod .has-is-product .Οβββ¨β© = Functor-path (Ξ» _ β refl) Ξ» _ β refl prod .has-is-product .Οβββ¨β© = Functor-path (Ξ» _ β refl) Ξ» _ β refl prod .has-is-product .unique p q = Functor-path (Ξ» x i β Fβ (p i) x , Fβ (q i) x) Ξ» f i β Fβ (p i) f , Fβ (q i) f