module Cat.Functor.Properties where
Functors🔗
This module defines the most important clases of functors: Full, faithful, fully faithful (abbreviated ff), split essentially surjective and (“merely”) essentially surjective.
A functor is full when its action on hom-sets is surjective:
is-full : Functor C D → Type _ is-full {C = C} {D = D} F = ∀ {x y} → is-surjective (F .F₁ {x = x} {y})
A functor is faithful when its action on hom-sets is injective:
is-faithful : Functor C D → Type _ is-faithful F = ∀ {x y} → injective (F .F₁ {x = x} {y})
module _ {C : Precategory o h} {D : Precategory o₁ h₁} where private module _ where module C = Cat.Reasoning C module D = Cat.Reasoning D open Cat.Reasoning using (_≅_ ; Inverses) open _≅_ public open Inverses public faithful→iso-fibre-prop : ∀ (F : Functor C D) → is-faithful F → ∀ {x y} → (f : F # x D.≅ F # y) → is-prop (Σ[ g ∈ x C.≅ y ] (F-map-iso F g ≡ f)) faithful→iso-fibre-prop F faithful f (g , p) (g' , q) = Σ-prop-path! $ ext (faithful (ap D.to (p ∙ sym q))) is-faithful-∘ : ∀ {F : Functor C D} {G : Functor B C} → is-faithful F → is-faithful G → is-faithful (F F∘ G) is-faithful-∘ Ff Gf p = Gf (Ff p)
Fully faithful functors🔗
A functor is fully faithful (abbreviated ff) when its action on hom-sets is an equivalence. Since Hom-sets are sets, it suffices for the functor to be full and faithful; Rather than taking this conjunction as a definition, we use the more directly useful data as a definition and prove the conjunction as a theorem.
is-fully-faithful : Functor C D → Type _ is-fully-faithful F = ∀ {x y} → is-equiv (F .F₁ {x = x} {y}) ff→faithful : {F : Functor C D} → is-fully-faithful F → is-faithful F ff→faithful f = Equiv.injective (_ , f) ff→full : {F : Functor C D} → is-fully-faithful F → is-full F ff→full {F = F} ff g = inc (equiv→inverse ff g , equiv→counit ff g) full+faithful→ff : (F : Functor C D) → is-full F → is-faithful F → is-fully-faithful F full+faithful→ff {C = C} {D = D} F surj inj .is-eqv = p where img-is-prop : ∀ {x y} f → is-prop (fibre (F .F₁ {x = x} {y}) f) img-is-prop f (g , p) (h , q) = Σ-prop-path (λ _ → D .Hom-set _ _ _ _) (inj (p ∙ sym q)) p : ∀ {x y} f → is-contr (fibre (F .F₁ {x = x} {y}) f) p f .centre = ∥-∥-elim (λ _ → img-is-prop f) (λ x → x) (surj f) p f .paths = img-is-prop f _
A very important property of fully faithful functors (like is that they are conservative: If the image of under is an isomorphism then was really an isomorphism
module _ {C : Precategory o h} {D : Precategory o₁ h₁} where private module C = Precategory C module D = Precategory D import Cat.Morphism C as Cm import Cat.Morphism D as Dm is-ff→is-conservative : {F : Functor C D} → is-fully-faithful F → ∀ {X Y} (f : C.Hom X Y) → Dm.is-invertible (F .F₁ f) → Cm.is-invertible f is-ff→is-conservative {F = F} ff f isinv = i where open Cm.is-invertible open Cm.Inverses
Since the functor is ff, we can find a map “” in the domain category to serve as an inverse for
g : C.Hom _ _ g = equiv→inverse ff (isinv .Dm.is-invertible.inv) module ff {a} {b} = Equiv (_ , ff {a} {b}) Ffog = F .F₁ (f C.∘ g) ≡⟨ F .F-∘ _ _ ⟩≡ F .F₁ f D.∘ F .F₁ g ≡⟨ ap₂ D._∘_ refl (ff.ε _) ∙ isinv .Dm.is-invertible.invl ⟩≡ D.id ∎ Fgof = F .F₁ (g C.∘ f) ≡⟨ F .F-∘ _ _ ⟩≡ F .F₁ g D.∘ F .F₁ f ≡⟨ ap₂ D._∘_ (ff.ε _) refl ∙ isinv .Dm.is-invertible.invr ⟩≡ D.id ∎ i : Cm.is-invertible _ i .inv = g i .inverses .invl = f C.∘ g ≡⟨ sym (ff.η _) ⟩≡ ff.from ⌜ F .F₁ (f C.∘ g) ⌝ ≡⟨ ap! (Ffog ∙ sym (F .F-id)) ⟩≡ ff.from (F .F₁ C.id) ≡⟨ ff.η _ ⟩≡ C.id ∎ i .inverses .invr = g C.∘ f ≡⟨ sym (ff.η _) ⟩≡ ff.from ⌜ F .F₁ (g C.∘ f) ⌝ ≡⟨ ap! (Fgof ∙ sym (F .F-id)) ⟩≡ ff.from (F .F₁ C.id) ≡⟨ ff.η _ ⟩≡ C.id ∎ is-ff→essentially-injective : {F : Functor C D} → is-fully-faithful F → ∀ {X Y} → F .F₀ X Dm.≅ F .F₀ Y → X Cm.≅ Y is-ff→essentially-injective {F = F} ff im = im' where open Dm._≅_ im using (to ; from ; inverses) D-inv' : Dm.is-invertible (F .F₁ (equiv→inverse ff to)) D-inv' .Dm.is-invertible.inv = from D-inv' .Dm.is-invertible.inverses = subst (λ e → Dm.Inverses e from) (sym (equiv→counit ff _)) inverses open Cm.is-invertible (is-ff→is-conservative {F = F} ff (equiv→inverse ff to) D-inv') im' : _ Cm.≅ _ im' .to = equiv→inverse ff to im' .from = inv im' .inverses .Cm.Inverses.invl = invl im' .inverses .Cm.Inverses.invr = invr
Essential fibres🔗
The essential fibre of a functor over an object is the space of objects of which takes, up to isomorphism, to
Essential-fibre : Functor C D → D .Ob → Type _ Essential-fibre {C = C} {D = D} F y = Σ[ x ∈ C ] (F # x ≅ y) where open import Cat.Morphism D
A functor is split essentially surjective (abbreviated split eso) if there is a procedure for finding points in the essential fibre over any object. It’s essentially surjective if this procedure merely, i.e. truncatedly, finds a point:
is-split-eso : Functor C D → Type _ is-split-eso F = ∀ y → Essential-fibre F y is-eso : Functor C D → Type _ is-eso F = ∀ y → ∥ Essential-fibre F y ∥
module _ {C : Precategory o h} {D : Precategory o₁ h₁} where import Cat.Reasoning C as C import Cat.Reasoning D as D private module _ where open import Cat.Reasoning using (_≅_ ; Inverses) open _≅_ public open Inverses public is-ff→F-map-iso-is-equiv : {F : Functor C D} → is-fully-faithful F → ∀ {X Y} → is-equiv (F-map-iso F {x = X} {Y}) is-ff→F-map-iso-is-equiv {F = F} ff = is-iso→is-equiv isom where isom : is-iso _ isom .is-iso.inv = is-ff→essentially-injective {F = F} ff isom .is-iso.rinv x = ext (equiv→counit ff _) isom .is-iso.linv x = ext (equiv→unit ff _)
If a functor is essentially surjective, then the precomposition functor is faithful for every precategory
is-eso→precompose-is-faithful : ∀ {oa ℓa} {A : Precategory oa ℓa} → (F : Functor C D) → is-eso F → is-faithful (precompose F {D = A})
This is rather abstract, so let’s unfold the statement a bit. If precomposition by is fully faithful, then we can determine equality of natural transformations between functors by only looking at the components of the form for every
Intuitively, this should be true for essentially surjective functors, as doesn’t miss out on any objects of but the actual proof involves some rather tedious calculations.
is-eso→precompose-is-faithful {A = A} F F-eso {G} {H} {α} {β} αL=βL = ext λ d → ∥-∥-out! do (c , Fc≅d) ← F-eso d let module Fc≅d = D._≅_ Fc≅d pure $ α.η d ≡⟨ A.intror (G.annihilate (D.invl Fc≅d)) ⟩≡ α.η d A.∘ G.₁ Fc≅d.to A.∘ G.₁ Fc≅d.from ≡⟨ A.extendl (α.is-natural _ _ _) ⟩≡ H.₁ Fc≅d.to A.∘ ⌜ α.η (F.₀ c) ⌝ A.∘ G.₁ Fc≅d.from ≡⟨ ap! (unext αL=βL c) ⟩≡ H.₁ Fc≅d.to A.∘ β.η (F.₀ c) A.∘ G.₁ Fc≅d.from ≡⟨ A.extendl (sym (β.is-natural _ _ _)) ⟩≡ β.η d A.∘ G.₁ Fc≅d.to A.∘ G.₁ Fc≅d.from ≡⟨ A.elimr (G.annihilate (D.invl Fc≅d)) ⟩≡ β.η d ∎ where module A = Cat.Reasoning A module F = Cat.Functor.Reasoning F module G = Cat.Functor.Reasoning G module H = Cat.Functor.Reasoning H module α = _=>_ α module β = _=>_ β
Another way of viewing this result is that it is a higher-dimensional
analog of the fact that precomposition with an epi is an embedding
.
Additionally, precomposition with an essentially surjective functor is conservative.
eso→precompose-conservative : ∀ {oa ℓa} {A : Precategory oa ℓa} → (F : Functor C D) → is-eso F → {G H : Functor D A} {α : G => H} → is-invertibleⁿ (α ◂ F) → is-invertibleⁿ α
The proof follows the same plan as the previous theorem: natural transformations are invertible when they are invertible objectwise, and covers every object of
eso→precompose-conservative {A = A} F F-eso {G} {H} {α} α⁻¹ = invertible→invertibleⁿ α λ d → ∥-∥-out! do (c , Fc≅d) ← F-eso d let module Fc≅d = D._≅_ Fc≅d pure $ A.make-invertible (G.₁ Fc≅d.to A.∘ α⁻¹.η c A.∘ H.₁ Fc≅d.from) (α.pulll (A.cancell (α⁻¹.invl #ₚ c)) ∙ H.annihilate Fc≅d.invl) (A.pullr (α.cancelr (α⁻¹.invr #ₚ c)) ∙ G.annihilate Fc≅d.invl) where module A = Cat.Reasoning A module F = Cat.Functor.Reasoning F module G = Cat.Functor.Reasoning G module H = Cat.Functor.Reasoning H module α = Cat.Natural.Reasoning α module α⁻¹ where open is-invertibleⁿ α⁻¹ public open Cat.Natural.Reasoning inv hiding (op) public
Pseudomonic functors🔗
A functor is pseudomonic if it is faithful and full on isomorphisms. Pseudomonic functors are arguably the correct notion of subcategory, as they ensure that we are not able to distinguish between isomorphic objects when creating a subcategory.
module _ {C : Precategory o h} {D : Precategory o₁ h₁} where import Cat.Reasoning C as C import Cat.Reasoning D as D
is-full-on-isos : Functor C D → Type (o ⊔ h ⊔ h₁) is-full-on-isos F = ∀ {x y} → (f : F .F₀ x D.≅ F .F₀ y) → ∃[ g ∈ x C.≅ y ] (F-map-iso F g ≡ f) record is-pseudomonic (F : Functor C D) : Type (o ⊔ h ⊔ h₁) where no-eta-equality field faithful : is-faithful F isos-full : is-full-on-isos F open is-pseudomonic
Somewhat surprisingly, pseudomonic functors are conservative. As is full on isos, there merely exists some iso in the fibre of However, invertibility is a property of morphisms, so we can untruncate the mere existence. Once we have our hands on the isomorphism, we perform a simple calculation to note that it yields an inverse to
pseudomonic→conservative : ∀ {F : Functor C D} → is-pseudomonic F → ∀ {x y} (f : C.Hom x y) → D.is-invertible (F .F₁ f) → C.is-invertible f pseudomonic→conservative {F = F} pseudo {x} {y} f inv = ∥-∥-rec C.is-invertible-is-prop (λ (g , p) → C.make-invertible (C.from g) (sym (ap (C._∘ _) (pseudo .faithful (ap D.to p))) ∙ C.invl g) (sym (ap (_ C.∘_) (pseudo .faithful (ap D.to p))) ∙ C.invr g)) (pseudo .isos-full (D.invertible→iso _ inv))
In a similar vein, pseudomonic functors are essentially injective. The proof follows a similar path to the prior one, hinging on the fact that faithful functors are an embedding on isos.
pseudomonic→essentially-injective : ∀ {F : Functor C D} → is-pseudomonic F → ∀ {x y} → F .F₀ x D.≅ F .F₀ y → x C.≅ y pseudomonic→essentially-injective {F = F} pseudo f = ∥-∥-rec (faithful→iso-fibre-prop F (pseudo .faithful) f) (λ x → x) (pseudo .isos-full f) .fst
Fully faithful functors are pseudomonic, as they are faithful and essentially injective.
ff→pseudomonic : ∀ {F : Functor C D} → is-fully-faithful F → is-pseudomonic F ff→pseudomonic {F} ff .faithful = ff→faithful {F = F} ff ff→pseudomonic {F} ff .isos-full f = inc (is-ff→essentially-injective {F = F} ff f , ext (equiv→counit ff (D.to f)))
Equivalence on objects functors🔗
A functor is an equivalence on objects if its action on objects is an equivalence.
is-equiv-on-objects : (F : Functor C D) → Type _ is-equiv-on-objects F = is-equiv (F .F₀)
If is an equivalence-on-objects functor, then it is (split) essentially surjective.
equiv-on-objects→split-eso : ∀ (F : Functor C D) → is-equiv-on-objects F → is-split-eso F equiv-on-objects→split-eso {D = D} F eqv y = equiv→inverse eqv y , path→iso (equiv→counit eqv y) equiv-on-objects→eso : ∀ (F : Functor C D) → is-equiv-on-objects F → is-eso F equiv-on-objects→eso F eqv y = inc (equiv-on-objects→split-eso F eqv y)