open import 1Lab.Prelude

open import Data.Fin.Base

import Data.Nat as Nat

module Data.Fin.Properties where

Finite Sets - Properties🔗

Ordering🔗

As noted in Data.Fin.Base, we’ve set up the ordering on Fin so that we can re-use all the proofs about the ordering on Nat.

However, there are still quite a few interesting things one can say about skip and squish. In particular, we can prove the simplicial identities, which characterize the interactions between these two functions.

These lemmas might seem somewhat arbitrary and complicated, which is true! However, they are enough to describe all the possible interactions of skip and squish, which in turn are the building blocks for every monotone function between Fin, so it’s not that surprising that they would be a bit of a mess!

skip-comm :  {n} (i j : Fin (suc n))  i  j
            x  skip (weaken i) (skip j x)  skip (fsuc j) (skip i x)
skip-comm fzero    j        le x        = refl
skip-comm (fsuc i) (fsuc j) le fzero    = refl
skip-comm (fsuc i) (fsuc j) (Nat.s≤s le) (fsuc x) = ap fsuc (skip-comm i j le x)

drop-comm :  {n} (i j : Fin n)  i  j
            x  squish j (squish (weaken i) x)  squish i (squish (fsuc j) x)
drop-comm fzero    fzero    le fzero = refl
drop-comm fzero    fzero    le (fsuc x) = refl
drop-comm fzero    (fsuc j) le fzero = refl
drop-comm fzero    (fsuc j) le (fsuc x) = refl
drop-comm (fsuc i) (fsuc j) le fzero = refl
drop-comm (fsuc i) (fsuc j) (Nat.s≤s le) (fsuc x) = ap fsuc (drop-comm i j le x)

squish-skip-comm :  {n} (i : Fin (suc n)) (j : Fin n)  i < fsuc j
                   x  squish (fsuc j) (skip (weaken i) x)  skip i (squish j x)
squish-skip-comm fzero j (Nat.s≤s p) x = refl
squish-skip-comm (fsuc i) (fsuc j) (Nat.s≤s p) fzero = refl
squish-skip-comm (fsuc i) (fsuc j) (Nat.s≤s p) (fsuc x) =
  ap fsuc (squish-skip-comm i j p x)

squish-skip :  {n} (i j : Fin n)  i  j
              x  squish j (skip (weaken j) x)  x
squish-skip fzero fzero p x = refl
squish-skip fzero (fsuc j) p x = absurd (fzero≠fsuc p)
squish-skip (fsuc i) fzero p x = refl
squish-skip (fsuc i) (fsuc j) p fzero = refl
squish-skip (fsuc i) (fsuc j) p (fsuc x) = ap fsuc (squish-skip i j (fsuc-inj p) x)

squish-skip-fsuc :  {n} (i : Fin (suc n)) (j : Fin n)  i  fsuc j
                   x  squish j (skip i x)  x
squish-skip-fsuc fzero fzero p x = refl
squish-skip-fsuc fzero (fsuc j) p x = absurd (fzero≠fsuc p)
squish-skip-fsuc (fsuc i) fzero p fzero = refl
squish-skip-fsuc (fsuc fzero) fzero p (fsuc x) = refl
squish-skip-fsuc (fsuc (fsuc i)) fzero p (fsuc x) =
  absurd (fzero≠fsuc (fsuc-inj (sym p)))
squish-skip-fsuc (fsuc i) (fsuc j) p fzero = refl
squish-skip-fsuc (fsuc i) (fsuc j) p (fsuc x) =
  ap fsuc (squish-skip-fsuc i j (fsuc-inj p) x)

Fin-peel :  {l k}  Fin (suc l)  Fin (suc k)  Fin l  Fin k
Fin-peel {l} {k} sl≃sk = (Iso→Equiv (l→k , (iso k→l b→a→b a→b→a))) where
  sk≃sl : Fin (suc k)  Fin (suc l)
  sk≃sl = sl≃sk e⁻¹
  module sl≃sk = Equiv sl≃sk
  module sk≃sl = Equiv sk≃sl

  l→k : Fin l  Fin k
  l→k x with inspect (sl≃sk.to (fsuc x))
  ... | fsuc y , _ = y
  ... | fzero , p with inspect (sl≃sk.to fzero)
  ... | fsuc y , _ = y
  ... | fzero , q = absurd (fzero≠fsuc (sl≃sk.injective₂ q p))

  k→l : Fin k  Fin l
  k→l x with inspect (sk≃sl.to (fsuc x))
  ... | fsuc x , _ = x
  ... | fzero , p with inspect (sk≃sl.to fzero)
  ... | fsuc y , _ = y
  ... | fzero , q = absurd (fzero≠fsuc (sk≃sl.injective₂ q p))

  absurd-path :  {} {A : Type } {y : A} {x : }  absurd x  y
  absurd-path {x = ()}

  a→b→a :  a  k→l (l→k a)  a
  a→b→a a with inspect (sl≃sk.to (fsuc a))
  a→b→a a | fsuc x , p′ with inspect (sk≃sl.to (fsuc x))
  a→b→a a | fsuc x , p′ | fsuc y , q′ = fsuc-inj (
    sym q′  ap (sk≃sl.to) (sym p′)  sl≃sk.η _)
  a→b→a a | fsuc x , p′ | fzero , q′ = absurd contra where
    r = sl≃sk.injective₂ p′ (sl≃sk.ε (fsuc x))
    contra = fzero≠fsuc (sym (r  q′))
  a→b→a a | fzero , p′ with inspect (sl≃sk.to fzero)
  a→b→a a | fzero , p′ | fsuc x , q′ with inspect (sk≃sl.to (fsuc x))
  a→b→a a | fzero , p′ | fsuc x , q′ | fsuc y , r′ = absurd $
    fzero≠fsuc (sym (sym r′  ap sk≃sl.to (sym q′)  sl≃sk.η fzero))
  a→b→a a | fzero , p′ | fsuc x , q′ | fzero , r′ with inspect (sk≃sl.to fzero)
  a→b→a a | fzero , p′ | fsuc x , q′ | fzero , r′ | fsuc z , s = fsuc-inj $
    sym s  ap sk≃sl.to (sym p′)  sl≃sk.η (fsuc a)
  a→b→a a | fzero , p′ | fsuc x , q′ | fzero , r′ | fzero , s = absurd-path
  a→b→a a | fzero , p′ | fzero , q′ = absurd $ fzero≠fsuc $
    sl≃sk.injective₂ q′ p′

  b→a→b :  b  l→k (k→l b)  b
  b→a→b b with inspect (sk≃sl.to (fsuc b))
  b→a→b b | fsuc x , p′ with inspect (sl≃sk.to (fsuc x))
  b→a→b b | fsuc x , p′ | fsuc y , q′ = fsuc-inj $
    sym q′  ap (sl≃sk.to) (sym p′)  sk≃sl.η _
  b→a→b b | fsuc x , p′ | fzero , q′ = absurd contra where
    r = sk≃sl.injective₂ p′ (sk≃sl.ε (fsuc x))
    contra = fzero≠fsuc (sym (r  q′))
  b→a→b b | fzero , p′ with inspect (sk≃sl.to fzero)
  b→a→b b | fzero , p′ | fsuc x , q′ with inspect (sl≃sk.to (fsuc x))
  b→a→b b | fzero , p′ | fsuc x , q′ | fsuc y , r′  = absurd $ fzero≠fsuc $
    sym (sym r′  ap (sl≃sk.to) (sym q′)  sk≃sl.η _)
  b→a→b b | fzero , p′ | fsuc x , q′ | fzero , r′ with inspect (sl≃sk.to fzero)
  b→a→b a | fzero , p′ | fsuc x , q′ | fzero , r′ | fsuc z , s = fsuc-inj $
    sym s  ap (sl≃sk.to) (sym p′)  sk≃sl.η (fsuc a)
  b→a→b a | fzero , p′ | fsuc x , q′ | fzero , r′ | fzero , s = absurd-path
  b→a→b b | fzero , p′ | fzero , q′ = absurd $ fzero≠fsuc $
    sk≃sl.injective₂ q′ p′

Fin-injective :  {l k}  Fin l  Fin k  l  k
Fin-injective {zero} {zero} l≃k = refl
Fin-injective {zero} {suc k} l≃k with equiv→inverse (l≃k .snd) fzero
... | ()
Fin-injective {suc l} {zero} l≃k with l≃k .fst fzero
... | ()
Fin-injective {suc l} {suc k} sl≃sk = ap suc $ Fin-injective (Fin-peel sl≃sk)

to-from-ℕ< :  {n} (x : ℕ< n)  to-ℕ< {n = n} (from-ℕ< x)  x
to-from-ℕ< {n = suc n} x = Σ-prop-path  k  Nat.≤-is-prop) (to-from-ℕ {n = suc n} x) where
  to-from-ℕ :  {n} x  to-nat {n = n} (from-ℕ< x)  x .fst
  to-from-ℕ {n = suc n} (zero , p) = refl
  to-from-ℕ {n = suc n} (suc x , Nat.s≤s p) = ap suc (to-from-ℕ {n = n} (x , p))

from-to-ℕ< :  {n} (x : Fin n)  from-ℕ< (to-ℕ< x)  x
from-to-ℕ< fzero = refl
from-to-ℕ< (fsuc x) = ap fsuc (from-to-ℕ< x)

Fin≃ℕ< :  {n}  Fin n  ℕ< n
Fin≃ℕ< {n} = to-ℕ< , is-iso→is-equiv (iso from-ℕ< (to-from-ℕ< {n}) from-to-ℕ<)

Finite choice🔗

An important fact about the (standard) finite sets in constructive mathematics is that they always support choice, which we phrase below as a “search” operator: If MM is any extension system (for example, the propositional truncation monad), then MM commutes with finite products:

finite-choice
  :  {} n {A : Fin n  Type } {M}
      (let module M = Effect M)
    Bind M 
   (∀ x  M.₀ (A x))  M.₀ (∀ x  A x)
finite-choice zero _    = pure λ { () }
finite-choice (suc n) k = do
  azero  k fzero
  asuc   finite-choice n (k  fsuc)
  pure λ where
    fzero     azero
    (fsuc x)  asuc x

An immediate consequence is that surjections into a finite set (thus, between finite sets) merely split:

finite-surjection-split
  :  {} {n} {B : Type }
   (f : B  Fin n)  (∀ x   fibre f x )
    (∀ x  fibre f x) 
finite-surjection-split f = finite-choice _