module Cat.Diagram.Colimit.Representable where
Representability of colimits🔗
Since colimits are defined by universal property, we can also phrase the definition in terms of an equivalence between
module _ {o ℓ} {J : Precategory ℓ ℓ} {C : Precategory o ℓ} {Dia : Functor J C} where private module C = Cat.Reasoning C open Functor open _=>_ open Corepresentation open Colimit open is-lan
Let be some diagram in If has a colimit then that means that maps out of are in bijection with a product of maps subject to some conditions.
Lim[C[F-,=]] : Functor C (Sets ℓ) Lim[C[F-,=]] .F₀ c = el (Dia => Const c) Nat-is-set Lim[C[F-,=]] .F₁ f α = constⁿ f ∘nt α Lim[C[F-,=]] .F-id = ext λ _ _ → C.idl _ Lim[C[F-,=]] .F-∘ _ _ = ext λ _ _ → sym $ C.assoc _ _ _ Hom-into-inj : ∀ {c : C.Ob} (eta : Dia => Const c) → Hom-from C c => Lim[C[F-,=]] Hom-into-inj eta .η x f = constⁿ f ∘nt eta Hom-into-inj eta .is-natural x y f = ext λ g _ → sym $ C.assoc _ _ _ represents→is-colimit : ∀ {c : C.Ob} {eta : Dia => Const c} → is-invertibleⁿ (Hom-into-inj eta) → is-colimit Dia c eta represents→is-colimit {c} {eta} nat-inv = colim where module nat-inv = is-invertibleⁿ nat-inv colim : is-colimit Dia c eta colim .σ {M} α = !constⁿ (nat-inv.inv .η _ (to-coconeⁿ α)) colim .σ-comm {M} {α} = ext λ j → unext nat-inv.invl _ _ j colim .σ-uniq {M} {α} {σ'} q = ext λ j → nat-inv.inv .η _ (to-coconeⁿ ⌜ α ⌝) ≡⟨ ap! q ⟩≡ nat-inv.inv .η _ ⌜ to-coconeⁿ ((σ' ◂ !F) ∘nt eta) ⌝ ≡⟨ ap! trivial! ⟩≡ nat-inv.inv .η _ ((!constⁿ (σ' .η tt) ◂ !F) ∘nt eta) ≡⟨ unext nat-inv.invr _ _ ⟩≡ σ' .η tt ∎