module Data.Int.DivMod where
Integer division🔗
We define the division where is an integer and is a positive natural number.
record DivModℤ (a : Int) (b : Nat) : Type where constructor divmodℤ field quotℤ : Int remℤ : Nat .quotient : a ≡ quotℤ *ℤ pos b +ℤ pos remℤ .smaller : remℤ < b open DivModℤ
In order to compute integer division, we reuse natural division. We proceed by cases: if is positive, we can simply compute the division as natural numbers.
divide-posℤ : ∀ a b → .⦃ _ : Positive b ⦄ → DivModℤ a b divide-posℤ (pos a) b using divmod q r p s ← divide-pos a b = divmodℤ (pos q) r (ap pos p ∙ sym (ap (_+ℤ pos r) (assign-pos _))) s
If is negative, we can compute as natural numbers and distinguish two cases: if the remainder is then divides so we simply negate the quotient and set the remainder to
divide-posℤ (negsuc a) b@(suc b') with divide-pos (suc a) b ... | divmod q zero p s = divmodℤ (assign neg q) 0 (ap (assign neg) p ∙ assign-+ (q * b) 0 ∙ ap (_+ℤ 0) (assign-*l q b)) (s≤s 0≤x)
If the remainder is non-zero, we have to correct for the fact that integer division as we’ve defined it rounds towards while natural division rounds towards (hence towards for negative numbers), so we take as the quotient and as the remainder.
... | divmod q (suc r) p s = divmodℤ (negsuc q) (b - suc r) (ap (assign neg) p ∙ lemma) (s≤s (monus-≤ b' r))
One annoying lemma later, we are done.
where lemma : assign neg (q * b + suc r) ≡ pos (b' - r) +ℤ negsuc (b' + q * b) lemma = assign neg (q * b + suc r) ≡⟨ ap (assign neg) (+-commutative (q * b) _) ⟩≡ negsuc (r + q * b) ≡˘⟨ negℤ-+ℤ-negsuc r (q * b) ⟩≡˘ negℤ (pos r) +ℤ negsuc (q * b) ≡⟨ ap (_+ℤ negsuc (q * b)) (ℤ.insertl {negℤ (pos b')} (+ℤ-invl (pos b')) {negℤ (pos r)}) ⟩≡ ⌜ negℤ (pos b') ⌝ +ℤ (pos b' -ℤ pos r) +ℤ negsuc (q * b) ≡˘⟨ ap¡ (assign-neg b') ⟩≡˘ assign neg b' +ℤ (pos b' -ℤ pos r) +ℤ negsuc (q * b) ≡⟨ ap (_+ℤ negsuc (q * b)) (+ℤ-commutative (assign neg b') (pos b' -ℤ pos r)) ⟩≡ (pos b' -ℤ pos r) +ℤ assign neg b' +ℤ negsuc (q * b) ≡˘⟨ +ℤ-assoc (pos b' -ℤ pos r) _ _ ⟩≡˘ (pos b' -ℤ pos r) +ℤ (assign neg b' +ℤ negsuc (q * b)) ≡⟨ ap₂ _+ℤ_ (pos-pos b' r) (ap (_+ℤ negsuc (q * b)) (assign-neg b')) ⟩≡ (b' ℕ- r) +ℤ (negℤ (pos b') +ℤ negsuc (q * b)) ≡⟨ ap ((b' ℕ- r) +ℤ_) (negℤ-+ℤ-negsuc b' (q * b)) ⟩≡ (b' ℕ- r) +ℤ negsuc (b' + q * b) ≡⟨ ap₂ _+ℤ_ (nat-diff-monus b' r (≤-peel (<-weaken (recover s)))) refl ⟩≡ pos (b' - r) +ℤ negsuc (b' + q * b) ∎
_/ℤ_ : Int → (b : Nat) → .⦃ _ : Positive b ⦄ → Int a /ℤ b = divide-posℤ a b .quotℤ _%ℤ_ : Int → (b : Nat) → .⦃ _ : Positive b ⦄ → Nat a %ℤ b = divide-posℤ a b .remℤ is-divmodℤ : ∀ x y → .⦃ _ : Positive y ⦄ → x ≡ (x /ℤ y) *ℤ pos y +ℤ pos (x %ℤ y) is-divmodℤ x (suc y) with divide-posℤ x (suc y) ... | divmodℤ q r α β = recover α x%ℤy<y : ∀ x y → .⦃ _ : Positive y ⦄ → (x %ℤ y) < y x%ℤy<y x (suc y) with divide-posℤ x (suc y) ... | divmodℤ q r α β = recover β infixl 9 _/ℤ_ _%ℤ_
Properties🔗
With the way we’ve set things up above, there is exactly one way to
divide
by
that is, the type DivModℤ a b
is a
proposition for all positive
b
.
DivModℤ-unique : ∀ a b → .⦃ _ : Positive b ⦄ → is-prop (DivModℤ a b) DivModℤ-unique a b@(suc b') x@(divmodℤ q r p s) y@(divmodℤ q' r' p' s') = go where
To see this, we start by showing that the remainders and are equal. To that end, we show that divides their difference; since both and are less than their difference must also be, hence it must be zero.
b∣r'-r : b ∣ℤ (r' ℕ- r) b∣r'-r .fst = q -ℤ q' b∣r'-r .snd = (q -ℤ q') *ℤ pos b ≡⟨ *ℤ-distribr-minus (pos b) q q' ⟩≡ q *ℤ pos b -ℤ q' *ℤ pos b ≡⟨ ℤ.equal-sum→equal-diff (q *ℤ pos b) (pos r) (q' *ℤ pos b) (pos r') (sym (recover p) ∙ recover p') ⟩≡ pos r' -ℤ pos r ≡⟨ pos-pos r' r ⟩≡ r' ℕ- r ∎ same-r : r ≡ r' same-r = dec→dne λ r≠r' → <-≤-asym (s≤s (nat-diff-bounded r' r b' (≤-peel (recover s')) (≤-peel (recover s)))) (m∣ℤsn→m≤sn (λ k → r≠r' (sym (nat-diff-positive r' r k))) b∣r'-r)
Since the remainders are equal, we have since multiplication by a positive integer is injective, we must also have
same-q : q ≡ q' same-q = *ℤ-injectiver-possuc b' q q' $ q *ℤ pos b ≡⟨ -ℤ-swapl _ _ _ (recover (sym p)) ⟩≡ a -ℤ pos r ≡⟨ ap (λ r → a -ℤ pos r) same-r ⟩≡ a -ℤ pos r' ≡˘⟨ -ℤ-swapl _ _ _ (recover (sym p')) ⟩≡˘ q' *ℤ pos b ∎
The last two fields are propositions, so this shows that the two
DivModℤ
s are equal.
go : x ≡ y go i = divmodℤ (same-q i) (same-r i) (is-prop→pathp (λ i → hlevel {T = a ≡ same-q i *ℤ pos b +ℤ pos (same-r i)} 1) p p' i) (is-prop→pathp (λ i → Nat.≤-is-prop {suc (same-r i)} {b}) s s' i)
From this, we deduce that divides the difference of two integers if and only if and have the same remainder modulo
divides-diff→same-rem : ∀ n x y → .⦃ _ : Positive n ⦄ → n ∣ℤ (x -ℤ y) → x %ℤ n ≡ y %ℤ n divides-diff→same-rem n x y n∣x-y using k , z ← ∣ℤ→fibre n∣x-y using divmodℤ q r p s ← divide-posℤ x n = ap remℤ (DivModℤ-unique _ _ (divmodℤ (q -ℤ k) r p' s) (divide-posℤ y n)) where p' : y ≡ (q -ℤ k) *ℤ pos n +ℤ pos r p' = y ≡˘⟨ negℤ-negℤ y ⟩≡˘ negℤ (negℤ y) ≡⟨ ℤ.insertr (ℤ.inversel {x}) {negℤ (negℤ y)} ⟩≡ ⌜ negℤ (negℤ y) +ℤ negℤ x ⌝ +ℤ x ≡⟨ ap! (+ℤ-commutative (negℤ (negℤ y)) _) ⟩≡ ⌜ negℤ x -ℤ negℤ y ⌝ +ℤ x ≡˘⟨ ap¡ (negℤ-distrib x (negℤ y)) ⟩≡˘ negℤ ⌜ x -ℤ y ⌝ +ℤ x ≡˘⟨ ap¡ z ⟩≡˘ negℤ (k *ℤ pos n) +ℤ x ≡⟨ ap (negℤ (k *ℤ pos n) +ℤ_) (recover p) ⟩≡ negℤ (k *ℤ pos n) +ℤ (q *ℤ pos n +ℤ pos r) ≡⟨ +ℤ-assoc (negℤ (k *ℤ pos n)) _ _ ⟩≡ ⌜ negℤ (k *ℤ pos n) +ℤ q *ℤ pos n ⌝ +ℤ pos r ≡⟨ ap! (+ℤ-commutative (negℤ (k *ℤ pos n)) _) ⟩≡ ⌜ q *ℤ pos n -ℤ k *ℤ pos n ⌝ +ℤ pos r ≡˘⟨ ap¡ (*ℤ-distribr-minus (pos n) q k) ⟩≡˘ (q -ℤ k) *ℤ pos n +ℤ pos r ∎ same-rem→divides-diff : ∀ n x y → .⦃ _ : Positive n ⦄ → x %ℤ n ≡ y %ℤ n → n ∣ℤ (x -ℤ y) same-rem→divides-diff n x y p = dividesℤ (x /ℤ n -ℤ y /ℤ n) $ (x /ℤ n -ℤ y /ℤ n) *ℤ pos n ≡⟨ *ℤ-distribr-minus (pos n) (x /ℤ n) (y /ℤ n) ⟩≡ x /ℤ n *ℤ pos n -ℤ y /ℤ n *ℤ pos n ≡˘⟨ -ℤ-cancelr (pos (x %ℤ n)) (x /ℤ n *ℤ pos n) _ ⟩≡˘ x /ℤ n *ℤ pos n +ℤ pos (x %ℤ n) -ℤ (y /ℤ n *ℤ pos n +ℤ pos ⌜ x %ℤ n ⌝) ≡⟨ ap! p ⟩≡ x /ℤ n *ℤ pos n +ℤ pos (x %ℤ n) -ℤ (y /ℤ n *ℤ pos n +ℤ pos (y %ℤ n)) ≡˘⟨ ap₂ _-ℤ_ (is-divmodℤ x n) (is-divmodℤ y n) ⟩≡˘ x -ℤ y ∎
…and that natural numbers below are their own remainder modulo
Fin-%ℤ : ∀ {n} (i : Fin n) → .⦃ _ : Positive n ⦄ → pos (i .lower) %ℤ n ≡ i .lower Fin-%ℤ {n} (fin i ⦃ forget p ⦄) = ap remℤ (DivModℤ-unique (pos i) n (divide-posℤ (pos i) n) (divmodℤ 0 i refl p))
We also show that divides if and only if
rem-zero→divides : ∀ n x → .⦃ _ : Positive n ⦄ → x %ℤ n ≡ 0 → n ∣ℤ x rem-zero→divides n x p = dividesℤ (x /ℤ n) $ x /ℤ n *ℤ pos n ≡˘⟨ +ℤ-zeror _ ⟩≡˘ x /ℤ n *ℤ pos n +ℤ pos ⌜ 0 ⌝ ≡˘⟨ ap¡ p ⟩≡˘ x /ℤ n *ℤ pos n +ℤ pos (x %ℤ n) ≡˘⟨ is-divmodℤ x n ⟩≡˘ x ∎ divides→rem-zero : ∀ n x → .⦃ _ : Positive n ⦄ → n ∣ℤ x → x %ℤ n ≡ 0 divides→rem-zero n@(suc _) x ⦃ p ⦄ n∣x = divides-diff→same-rem n x 0 ⦃ p ⦄ (subst (fibre (_*ℤ pos n)) (sym (+ℤ-zeror x)) (∣ℤ→fibre n∣x))