module Cat.Instances.Shape.Two where
The two-object category🔗
We define the discrete category on two objects, which is useful for expressing binary products and coproducts as limits and colimits, respectively.
2-object-category : Precategory _ _ 2-object-category = Disc' (el! Bool)
A diagram of shape in simply consists of two objects of
module _ {o h} {C : Precategory o h} where open Precategory C 2-object-diagram : Ob → Ob → Functor 2-object-category C 2-object-diagram a b = Disc-diagram λ where true → a false → b
Similarly, a natural transformation between two such diagrams consists of two morphisms in
2-object-nat-trans : ∀ {F G : Functor 2-object-category C} → Hom (F # true) (G # true) → Hom (F # false) (G # false) → F => G 2-object-nat-trans f g = Disc-natural λ where true → f false → g
We note that any functor is canonically equal, not just naturally isomorphic, to the one we defined above.
canonical-functors : ∀ (F : Functor 2-object-category C) → F ≡ 2-object-diagram (F # true) (F # false) canonical-functors F = Functor-path p q where p : ∀ x → _ p false = refl p true = refl q : ∀ {x y} (f : x ≡ y) → _ q {false} {false} p = F .F₁ p ≡⟨ ap (F .F₁) prop! ⟩≡ F .F₁ refl ≡⟨ F .F-id ⟩≡ id ∎ q {true} {true} p = F .F₁ p ≡⟨ ap (F .F₁) prop! ⟩≡ F .F₁ refl ≡⟨ F .F-id ⟩≡ id ∎ q {false} {true} p = absurd (true≠false (sym p)) q {true} {false} p = absurd (true≠false p)