module Data.Bool where
The booleans🔗
open import Data.Bool.Base public
Pattern matching on only the first argument might seem like a somewhat impractical choice due to its asymmetry - however, it shortens a lot of proofs since we get a lot of judgemental equalities for free. For example, see the following statements:
and-associative : (x y z : Bool) → and x (and y z) ≡ and (and x y) z and-associative false y z = refl and-associative true y z = refl or-associative : (x y z : Bool) → or x (or y z) ≡ or (or x y) z or-associative false y z = refl or-associative true y z = refl and-commutative : (x y : Bool) → and x y ≡ and y x and-commutative false false = refl and-commutative false true = refl and-commutative true false = refl and-commutative true true = refl or-commutative : (x y : Bool) → or x y ≡ or y x or-commutative false false = refl or-commutative false true = refl or-commutative true false = refl or-commutative true true = refl and-truer : (x : Bool) → and x true ≡ x and-truer false = refl and-truer true = refl and-falser : (x : Bool) → and x false ≡ false and-falser false = refl and-falser true = refl and-truel : (x : Bool) → and true x ≡ x and-truel x = refl or-falser : (x : Bool) → or x false ≡ x or-falser false = refl or-falser true = refl or-truer : (x : Bool) → or x true ≡ true or-truer false = refl or-truer true = refl or-falsel : (x : Bool) → or false x ≡ x or-falsel x = refl and-absorbs-orr : (x y : Bool) → and x (or x y) ≡ x and-absorbs-orr false y = refl and-absorbs-orr true y = refl or-absorbs-andr : (x y : Bool) → or x (and x y) ≡ x or-absorbs-andr false y = refl or-absorbs-andr true y = refl and-distrib-orl : (x y z : Bool) → and x (or y z) ≡ or (and x y) (and x z) and-distrib-orl false y z = refl and-distrib-orl true y z = refl or-distrib-andl : (x y z : Bool) → or x (and y z) ≡ and (or x y) (or x z) or-distrib-andl false y z = refl or-distrib-andl true y z = refl and-idempotent : (x : Bool) → and x x ≡ x and-idempotent false = refl and-idempotent true = refl or-idempotent : (x : Bool) → or x x ≡ x or-idempotent false = refl or-idempotent true = refl and-distrib-orr : (x y z : Bool) → and (or x y) z ≡ or (and x z) (and y z) and-distrib-orr true y z = sym (or-absorbs-andr z y) ∙ ap (or z) (and-commutative z y) and-distrib-orr false y z = refl or-distrib-andr : (x y z : Bool) → or (and x y) z ≡ and (or x z) (or y z) or-distrib-andr true y z = refl or-distrib-andr false y z = sym (and-absorbs-orr z y) ∙ ap (and z) (or-commutative z y)
and-reflect-true-l : ∀ {x y} → and x y ≡ true → x ≡ true and-reflect-true-l {x = true} p = refl and-reflect-true-l {x = false} p = p and-reflect-true-r : ∀ {x y} → and x y ≡ true → y ≡ true and-reflect-true-r {x = true} {y = true} p = refl and-reflect-true-r {x = false} {y = true} p = refl and-reflect-true-r {x = true} {y = false} p = p and-reflect-true-r {x = false} {y = false} p = p or-reflect-true : ∀ {x y} → or x y ≡ true → x ≡ true ⊎ y ≡ true or-reflect-true {x = true} {y = y} p = inl refl or-reflect-true {x = false} {y = true} p = inr refl or-reflect-true {x = false} {y = false} p = absurd (true≠false (sym p)) or-reflect-false-l : ∀ {x y} → or x y ≡ false → x ≡ false or-reflect-false-l {x = true} p = absurd (true≠false p) or-reflect-false-l {x = false} p = refl or-reflect-false-r : ∀ {x y} → or x y ≡ false → y ≡ false or-reflect-false-r {x = true} {y = true} p = absurd (true≠false p) or-reflect-false-r {x = true} {y = false} p = refl or-reflect-false-r {x = false} {y = true} p = absurd (true≠false p) or-reflect-false-r {x = false} {y = false} p = refl and-reflect-false : ∀ {x y} → and x y ≡ false → x ≡ false ⊎ y ≡ false and-reflect-false {x = true} {y = y} p = inr p and-reflect-false {x = false} {y = y} p = inl refl
All the properties above hold both in classical and constructive mathematics, even in minimal logic that fails to validate both the law of the excluded middle as well as the law of noncontradiction. However, the boolean operations satisfy both of these laws:
not-and≡or-not : (x y : Bool) → not (and x y) ≡ or (not x) (not y) not-and≡or-not false y = refl not-and≡or-not true y = refl not-or≡and-not : (x y : Bool) → not (or x y) ≡ and (not x) (not y) not-or≡and-not false y = refl not-or≡and-not true y = refl or-complementl : (x : Bool) → or (not x) x ≡ true or-complementl false = refl or-complementl true = refl and-complementl : (x : Bool) → and (not x) x ≡ false and-complementl false = refl and-complementl true = refl
Furthermore, note that not
has no fixed
points.
not-no-fixed : ∀ {x} → x ≡ not x → ⊥ not-no-fixed {x = true} p = absurd (true≠false p) not-no-fixed {x = false} p = absurd (true≠false (sym p))
Exclusive disjunction (usually known as XOR) also yields additional structure - in particular, it can be viewed as an addition operator in a ring whose multiplication is defined by conjunction:
xor : Bool → Bool → Bool xor false y = y xor true y = not y xor-associative : (x y z : Bool) → xor x (xor y z) ≡ xor (xor x y) z xor-associative false y z = refl xor-associative true false z = refl xor-associative true true z = not-involutive z xor-commutative : (x y : Bool) → xor x y ≡ xor y x xor-commutative false false = refl xor-commutative false true = refl xor-commutative true false = refl xor-commutative true true = refl xor-falser : (x : Bool) → xor x false ≡ x xor-falser false = refl xor-falser true = refl xor-truer : (x : Bool) → xor x true ≡ not x xor-truer false = refl xor-truer true = refl xor-inverse-self : (x : Bool) → xor x x ≡ false xor-inverse-self false = refl xor-inverse-self true = refl and-distrib-xorr : (x y z : Bool) → and (xor x y) z ≡ xor (and x z) (and y z) and-distrib-xorr false y z = refl and-distrib-xorr true y false = and-falser (not y) ∙ sym (and-falser y) and-distrib-xorr true y true = (and-truer (not y)) ∙ ap not (sym (and-truer y))
Material implication between booleans also interacts nicely with many of the other operations:
imp : Bool → Bool → Bool imp false y = true imp true y = y imp-truer : (x : Bool) → imp x true ≡ true imp-truer false = refl imp-truer true = refl
Furthermore, material implication is equivalent to the classical definition.
imp-not-or : ∀ x y → or (not x) y ≡ imp x y imp-not-or false y = refl imp-not-or true y = refl
not-inj : ∀ {x y} → not x ≡ not y → x ≡ y not-inj {x = true} {y = true} p = refl not-inj {x = true} {y = false} p = sym p not-inj {x = false} {y = true} p = sym p not-inj {x = false} {y = false} p = refl ne→is-not : ∀ {x y} → x ≠ y → x ≡ not y ne→is-not {true} {true} p = absurd (p refl) ne→is-not {true} {false} p = refl ne→is-not {false} {true} p = refl ne→is-not {false} {false} p = absurd (p refl)
Aut(Bool)🔗
We characterise the type Bool ≡ Bool
. There are exactly
two paths, and we can decide which path we’re looking at by seeing how
it acts on the element true
.
First, two small lemmas: we can tell whether we’re looking at the identity equivalence or the “not” equivalence by seeing how it acts on the constructors.
module _ (e : Bool ≃ Bool) where private module e = Equiv e bool-equiv-id : ∀ x y → e.to x ≡ x → e.to y ≡ y bool-equiv-id true true α = α bool-equiv-id false false α = α bool-equiv-id true false α with e.to false in β ... | false = refl ... | true = absurd (true≠false (e.injective₂ α (Id≃path.to β))) bool-equiv-id false true α with e.to true in β ... | false = absurd (false≠true (e.injective₂ α (Id≃path.to β))) ... | true = refl bool-equiv-not : ∀ x y → e.to x ≡ not x → e.to y ≡ not y bool-equiv-not true true α = α bool-equiv-not false false α = α bool-equiv-not true false α with e.to false in β ... | true = refl ... | false = absurd (true≠false (e.injective₂ α (Id≃path.to β))) bool-equiv-not false true α with e.to true in β ... | false = refl ... | true = absurd (false≠true (e.injective₂ α (Id≃path.to β))) bool-equiv-not' : ∀ x y → e.to x ≠ x → e.to y ≡ not y bool-equiv-not' x y α = bool-equiv-not x y (ne→is-not α)
private classify : Bool ≃ Bool → Bool classify e with e .fst true ≡? true ... | yes _ = true ... | no _ = false named : Bool → Bool ≃ Bool named = if_then id≃ else not≃ classify-named : (x : Bool) → classify (named x) ≡ x classify-named true = refl classify-named false = refl named-classify : (e : Bool ≃ Bool) → ∀ x → named (classify e) .fst x ≡ e .fst x named-classify e x with e .fst true ≡? true ... | yes p = sym (bool-equiv-id e true x p) ... | no ¬p = sym (bool-equiv-not e true x (ne→is-not ¬p)) Bool-automorphisms : (Bool ≃ Bool) ≃ Bool Bool-automorphisms .fst = classify Bool-automorphisms .snd = is-iso→is-equiv record { from = named ; rinv = classify-named ; linv = λ e → Σ-pathp (funext (named-classify e)) (is-prop→pathp (λ _ → is-equiv-is-prop _) _ _) } Bool-equiv-elim : ∀ {ℓ} (P : Bool ≃ Bool → Type ℓ) → P id≃ → P not≃ → ∀ e → P e Bool-equiv-elim P pid pnot e with inspect (e .fst true) ... | true , p = subst P (ext λ x → sym (bool-equiv-id e true x p)) pid ... | false , p = subst P (ext λ x → sym (bool-equiv-not e true x p)) pnot