module Cat.Diagram.Coproduct {o h} (C : Precategory o h) where

CoproductsπŸ”—

The coproduct of two objects and (if it exists), is the smallest object equipped with β€œinjection” maps It is dual to the product.

We witness this notion of β€œsmallest object” with a universal property; Given any other that also admits injection maps from and we must have a unique map that factors the injections into This is best explained by a commutative diagram:

record is-coproduct {A B P} (ι₁ : Hom A P) (ΞΉβ‚‚ : Hom B P) : Type (o βŠ” h) where
  field
    [_,_] : βˆ€ {Q} (inj0 : Hom A Q) (inj1 : Hom B Q) β†’ Hom P Q
    []βˆ˜ΞΉβ‚ : βˆ€ {Q} {inj0 : Hom A Q} {inj1} β†’ [ inj0 , inj1 ] ∘ ι₁ ≑ inj0
    []βˆ˜ΞΉβ‚‚ : βˆ€ {Q} {inj0 : Hom A Q} {inj1} β†’ [ inj0 , inj1 ] ∘ ΞΉβ‚‚ ≑ inj1

    unique : βˆ€ {Q} {inj0 : Hom A Q} {inj1}
           β†’ {other : Hom P Q}
           β†’ other ∘ ι₁ ≑ inj0
           β†’ other ∘ ΞΉβ‚‚ ≑ inj1
           β†’ other ≑ [ inj0 , inj1 ]

  uniqueβ‚‚ : βˆ€ {Q} {inj0 : Hom A Q} {inj1}
          β†’ βˆ€ {o1} (p1 : o1 ∘ ι₁ ≑ inj0) (q1 : o1 ∘ ΞΉβ‚‚ ≑ inj1)
          β†’ βˆ€ {o2} (p2 : o2 ∘ ι₁ ≑ inj0) (q2 : o2 ∘ ΞΉβ‚‚ ≑ inj1)
          β†’ o1 ≑ o2
  uniqueβ‚‚ p1 q1 p2 q2 = unique p1 q1 βˆ™ sym (unique p2 q2)

A coproduct of and is an explicit choice of coproduct diagram:

record Coproduct (A B : Ob) : Type (o βŠ” h) where
  field
    coapex : Ob
    ι₁ : Hom A coapex
    ΞΉβ‚‚ : Hom B coapex
    has-is-coproduct : is-coproduct ι₁ ΞΉβ‚‚

  open is-coproduct has-is-coproduct public

UniquenessπŸ”—

The uniqueness argument presented here is dual to the argument for the product.

  +-Unique : (c1 c2 : Coproduct A B) β†’ coapex c1 β‰… coapex c2
  +-Unique c1 c2 = make-iso c1β†’c2 c2β†’c1 c1β†’c2β†’c1 c2β†’c1β†’c2
    where
      module c1 = Coproduct c1
      module c2 = Coproduct c2

      c1β†’c2 : Hom (coapex c1) (coapex c2)
      c1β†’c2 = c1.[ c2.ι₁ , c2.ΞΉβ‚‚ ]

      c2β†’c1 : Hom (coapex c2) (coapex c1)
      c2β†’c1 = c2.[ c1.ι₁ , c1.ΞΉβ‚‚ ]
      c1β†’c2β†’c1 : c1β†’c2 ∘ c2β†’c1 ≑ id
      c1β†’c2β†’c1 =
        c2.uniqueβ‚‚
          (pullr c2.[]βˆ˜ΞΉβ‚ βˆ™ c1.[]βˆ˜ΞΉβ‚)
          (pullr c2.[]βˆ˜ΞΉβ‚‚ βˆ™ c1.[]βˆ˜ΞΉβ‚‚)
          (idl _) (idl _)

      c2β†’c1β†’c2 : c2β†’c1 ∘ c1β†’c2 ≑ id
      c2β†’c1β†’c2 =
        c1.uniqueβ‚‚
          (pullr c1.[]βˆ˜ΞΉβ‚ βˆ™ c2.[]βˆ˜ΞΉβ‚)
          (pullr c1.[]βˆ˜ΞΉβ‚‚ βˆ™ c2.[]βˆ˜ΞΉβ‚‚)
          (idl _) (idl _)

Categories with all binary coproductsπŸ”—

Categories with all binary coproducts are quite common, so we define a module for working with them.

has-coproducts : Type _
has-coproducts = βˆ€ a b β†’ Coproduct a b

module Binary-coproducts (all-coproducts : has-coproducts) where

  module _ {a b} where open Coproduct (all-coproducts a b) renaming (unique to []-unique) hiding (coapex) public
  module _ a b where open Coproduct (all-coproducts a b) renaming (coapex to infixr 7 _βŠ•β‚€_) using () public
  open Functor

  infix 50 _βŠ•β‚_

  _βŠ•β‚_ : βˆ€ {a b x y} β†’ Hom a x β†’ Hom b y β†’ Hom (a βŠ•β‚€ b) (x βŠ•β‚€ y)
  f βŠ•β‚ g = [ ι₁ ∘ f , ΞΉβ‚‚ ∘ g ]

  βŠ•-functor : Functor (C Γ—αΆœ C) C
  βŠ•-functor .Fβ‚€ (a , b) = a βŠ•β‚€ b
  βŠ•-functor .F₁ (f , g) = f βŠ•β‚ g
  βŠ•-functor .F-id = sym $ []-unique id-comm-sym id-comm-sym
  βŠ•-functor .F-∘ (f , g) (h , i) =
    sym $ []-unique
      (pullr []βˆ˜ΞΉβ‚ βˆ™ extendl []βˆ˜ΞΉβ‚)
      (pullr []βˆ˜ΞΉβ‚‚ βˆ™ extendl []βˆ˜ΞΉβ‚‚)

  βˆ‡ : βˆ€ {a} β†’ Hom (a βŠ•β‚€ a) a
  βˆ‡ = [ id , id ]

  coswap : βˆ€ {a b} β†’ Hom (a βŠ•β‚€ b) (b βŠ•β‚€ a)
  coswap = [ ΞΉβ‚‚ , ι₁ ]

  βŠ•-assoc : βˆ€ {a b c} β†’ Hom (a βŠ•β‚€ (b βŠ•β‚€ c)) ((a βŠ•β‚€ b) βŠ•β‚€ c)
  βŠ•-assoc = [ ι₁ ∘ ι₁ , [ ι₁ ∘ ΞΉβ‚‚ , ΞΉβ‚‚ ] ]