module Cat.Instances.Discrete where
private variable β β' : Level X : Type β C : Precategory β β' open Precategory open Functor open _=>_
Discrete categoriesπ
Given a groupoid we can build the category with space of objects and a single morphism whenever
Disc : (A : Type β) β is-groupoid A β Precategory β β Disc A A-grpd .Ob = A Disc A A-grpd .Hom = _β‘_ Disc A A-grpd .Hom-set = A-grpd Disc A A-grpd .id = refl Disc A A-grpd ._β_ p q = q β p Disc A A-grpd .idr _ = β-idl _ Disc A A-grpd .idl _ = β-idr _ Disc A A-grpd .assoc _ _ _ = sym (β-assoc _ _ _) Disc' : Set β β Precategory β β Disc' A = Disc β£ A β£ h where abstract h : is-groupoid β£ A β£ h = is-hlevel-suc 2 (A .is-tr)
Clearly this is a univalent groupoid:
Disc-is-category : β {A : Type β} {A-grpd} β is-category (Disc A A-grpd) Disc-is-category .to-path is = is .to Disc-is-category .to-path-over is = β -pathp _ _ _ Ξ» i j β is .to (i β§ j) Disc-is-groupoid : β {A : Type β} {A-grpd} β is-pregroupoid (Disc A A-grpd) Disc-is-groupoid p = make-invertible _ (sym p) (β-invl p) (β-invr p)
We can lift any function between the underlying types to a functor between discrete categories. This is because every function automatically respects equality in a functorial way.
lift-disc : β {A : Set β} {B : Set β'} β (β£ A β£ β β£ B β£) β Functor (Disc' A) (Disc' B) lift-disc f .Fβ = f lift-disc f .Fβ = ap f lift-disc f .F-id = refl lift-disc f .F-β p q = ap-β f q p
Codisc' : β {β'} β Type β β Precategory β β' Codisc' x .Ob = x Codisc' x .Hom _ _ = Lift _ β€ Codisc' x .Hom-set _ _ = is-propβis-set (Ξ» _ _ i β lift tt) Codisc' x .id = lift tt Codisc' x ._β_ _ _ = lift tt Codisc' x .idr _ = refl Codisc' x .idl _ = refl Codisc' x .assoc _ _ _ = refl
Diagrams in Disc(X)π
If
is a discrete type
, then it is in
particular in Set
, and we can make diagrams
of shape
in some category
using the decidable equality on
We note that the decidable equality is redundant information:
The construction Disc'
above extends into a left adjoint to the Ob
functor.
Disc-diagram : β {X : Set β} β¦ _ : Discrete β£ X β£ β¦ β (β£ X β£ β Ob C) β Functor (Disc' X) C Disc-diagram {C = C} {X = X} β¦ d β¦ f = F where module C = Precategory C P : β£ X β£ β β£ X β£ β Type _ P x y = C.Hom (f x) (f y) go : β {x y : β£ X β£} β x β‘ y β Dec (x β‘α΅’ y) β P x y go {x} {.x} p (yes reflα΅’) = C.id go {x} {y} p (no Β¬p) = absurd (Β¬p (Idβpath.from p))
The object part of the functor is the provided and the decidable equality is used to prove that respects equality. This is why itβs redundant: automatically respects equality, because itβs a function! However, by using the decision procedure, we get better computational behaviour: Very often, will be and substitution along is easy to deal with.
F : Functor _ _ F .Fβ = f F .Fβ {x} {y} p = go p (x β‘α΅’? y)
Proving that our our is functorial involves a bunch of tedious computations with equalities and a whole waterfall of absurd cases:
F .F-id {x} = refl F .F-β {x} {y} {z} f g = J (Ξ» y g β β {z} (f : y β‘ z) β go (g β f) (x β‘α΅’? z) β‘ go f (y β‘α΅’? z) C.β go g (x β‘α΅’? y)) (Ξ» f β J (Ξ» z f β go (refl β f) (x β‘α΅’? z) β‘ go f (x β‘α΅’? z) C.β C.id) (sym (C.idr _)) f) g f
Disc-adjunct : β {iss : is-groupoid X} β (X β Ob C) β Functor (Disc X iss) C Disc-adjunct {C = C} F .Fβ = F Disc-adjunct {C = C} F .Fβ p = subst (C .Hom (F _) β F) p (C .id) Disc-adjunct {C = C} F .F-id = transport-refl _ Disc-adjunct {C = C} {iss = iss} F .F-β {x} {y} {z} f g = path where import Cat.Reasoning C as C go = Disc-adjunct {C = C} {iss} F .Fβ abstract path : go (g β f) β‘ C ._β_ (go f) (go g) path = J' (Ξ» y z f β β {x} (g : x β‘ y) β go (g β f) β‘ go f C.β go g) (Ξ» x g β subst-β (C .Hom (F _) β F) _ _ _ Β·Β· transport-refl _ Β·Β· C.introl (transport-refl _)) f {x} g Disc-into : β {β} (X : Set β) β (F : C .Ob β β£ X β£) β (Fβ : β {x y} β C .Hom x y β F x β‘ F y) β Functor C (Disc' X) Disc-into X F Fβ .Fβ = F Disc-into X F Fβ .Fβ = Fβ Disc-into X F Fβ .F-id = X .is-tr _ _ _ _ Disc-into X F Fβ .F-β _ _ = X .is-tr _ _ _ _
Disc-natural : β {X : Set β} β {F G : Functor (Disc' X) C} β (β x β C .Hom (F .Fβ x) (G .Fβ x)) β F => G Disc-natural fam .Ξ· = fam Disc-natural {C = C} {F = F} {G = G} fam .is-natural x y f = J (Ξ» y p β fam y C.β F .Fβ p β‘ G .Fβ p C.β fam x) (C.elimr (F .F-id) β C.introl (G .F-id)) f where module C = Cat.Reasoning C Disc-naturalβ : β {X : Type β} {Y : Type β'} β {issx : is-groupoid X} {issy : is-groupoid Y} β {F G : Functor (Disc X issx ΓαΆ Disc Y issy) C} β ((x : X Γ Y) β C .Hom (F .Fβ x) (G .Fβ x)) β F => G Disc-naturalβ fam .Ξ· = fam Disc-naturalβ {C = C} {F = F} {G = G} fam .is-natural x y (p , q) = J (Ξ» y' p' β fam y' C.β F .Fβ (ap fst p' , ap snd p') β‘ G .Fβ (ap fst p' , ap snd p') C.β fam x) (C.elimr (F .F-id) β C.introl (G .F-id)) (Ξ£-pathp p q) where module C = Cat.Reasoning C