module Cat.Diagram.Product where
Productsπ
The product of two objects and if it exists, is the smallest object equipped with βprojectionβ maps and This situation can be visualised by putting the data of a product into a commutative diagram, as the one below: To express that is the smallest object with projections to and we ask that any other object with projections through and factors uniquely through
In the sense that (univalent) categories generalise posets, the product of and β if it exists β generalises the binary meet Since products are unique when they exist, we may safely denote any product of and by
For a diagram to be a product diagram, it must be able to cough up an arrow given the data of another span which must not only fit into the diagram above but be unique among the arrows that do so.
This factoring is called the pairing of the arrows and since in the special case where is the terminal object (hence the two arrows are global elements of resp. the pairing is a global element of the product
record is-product {A B P} (Οβ : Hom P A) (Οβ : Hom P B) : Type (o β β) where field β¨_,_β© : β {Q} (p1 : Hom Q A) (p2 : Hom Q B) β Hom Q P Οβββ¨β© : β {Q} {p1 : Hom Q _} {p2} β Οβ β β¨ p1 , p2 β© β‘ p1 Οβββ¨β© : β {Q} {p1 : Hom Q _} {p2} β Οβ β β¨ p1 , p2 β© β‘ p2 unique : β {Q} {p1 : Hom Q A} {p2} β {other : Hom Q P} β Οβ β other β‘ p1 β Οβ β other β‘ p2 β other β‘ β¨ p1 , p2 β© uniqueβ : β {Q} {pr1 : Hom Q A} {pr2} β β {o1} (p1 : Οβ β o1 β‘ pr1) (q1 : Οβ β o1 β‘ pr2) β β {o2} (p2 : Οβ β o2 β‘ pr1) (q2 : Οβ β o2 β‘ pr2) β o1 β‘ o2 uniqueβ p1 q1 p2 q2 = unique p1 q1 β sym (unique p2 q2) β¨β©β : β {Q R} {p1 : Hom Q A} {p2 : Hom Q B} (f : Hom R Q) β β¨ p1 , p2 β© β f β‘ β¨ p1 β f , p2 β f β© β¨β©β f = unique (pulll Οβββ¨β©) (pulll Οβββ¨β©) β¨β©-Ξ· : β¨ Οβ , Οβ β© β‘ id β¨β©-Ξ· = sym $ unique (idr _) (idr _)
A product of and is an explicit choice of product diagram:
record Product (A B : Ob) : Type (o β β) where no-eta-equality field apex : Ob Οβ : Hom apex A Οβ : Hom apex B has-is-product : is-product Οβ Οβ open is-product has-is-product public
Uniquenessπ
module _ {o β} {C : Precategory o β} where open Cat.Reasoning C open Product hiding (β¨_,_β© ; Οβ ; Οβ ; β¨β©β) private variable A B a b c d : Ob
Products, when they exist, are unique. Itβs easiest to see this with a diagrammatic argument: If we have product diagrams and we can fit them into a βcommutative diamondβ like the one below:
Since both and are products, we know that the dashed arrows in the diagram below exist, so the overall diagram commutes: hence we have an isomorphism
We construct the map as the pairing of the projections from and symmetrically for
Γ-Unique : (p1 p2 : Product C A B) β apex p1 β apex p2 Γ-Unique p1 p2 = make-iso p1βp2 p2βp1 p1βp2βp1 p2βp1βp2 where module p1 = Product p1 module p2 = Product p2 p1βp2 : Hom (apex p1) (apex p2) p1βp2 = p2.β¨ p1.Οβ , p1.Οβ β©p2. p2βp1 : Hom (apex p2) (apex p1) p2βp1 = p1.β¨ p2.Οβ , p2.Οβ β©p1.
These are unique because they are maps into products which commute with the projections.
p1βp2βp1 : p1βp2 β p2βp1 β‘ id p1βp2βp1 = p2.uniqueβ (assoc _ _ _ Β·Β· ap (_β _) p2.Οβββ¨β© Β·Β· p1.Οβββ¨β©) (assoc _ _ _ Β·Β· ap (_β _) p2.Οβββ¨β© Β·Β· p1.Οβββ¨β©) (idr _) (idr _) p2βp1βp2 : p2βp1 β p1βp2 β‘ id p2βp1βp2 = p1.uniqueβ (assoc _ _ _ Β·Β· ap (_β _) p1.Οβββ¨β© Β·Β· p2.Οβββ¨β©) (assoc _ _ _ Β·Β· ap (_β _) p1.Οβββ¨β© Β·Β· p2.Οβββ¨β©) (idr _) (idr _) is-product-iso : β {A A' B B' P} {Οβ : Hom P A} {Οβ : Hom P B} {f : Hom A A'} {g : Hom B B'} β is-invertible f β is-invertible g β is-product C Οβ Οβ β is-product C (f β Οβ) (g β Οβ) is-product-iso f-iso g-iso prod = prod' where module fi = is-invertible f-iso module gi = is-invertible g-iso open is-product prod' : is-product _ _ _ prod' .β¨_,_β© qa qb = prod .β¨_,_β© (fi.inv β qa) (gi.inv β qb) prod' .Οβββ¨β© = pullr (prod .Οβββ¨β©) β cancell fi.invl prod' .Οβββ¨β© = pullr (prod .Οβββ¨β©) β cancell gi.invl prod' .unique p q = prod .unique (sym (ap (_ β_) (sym p) β pulll (cancell fi.invr))) (sym (ap (_ β_) (sym q) β pulll (cancell gi.invr))) is-product-iso-apex : β {A B P P'} {Οβ : Hom P A} {Οβ : Hom P B} {Οβ' : Hom P' A} {Οβ' : Hom P' B} {f : Hom P' P} β is-invertible f β Οβ β f β‘ Οβ' β Οβ β f β‘ Οβ' β is-product C Οβ Οβ β is-product C Οβ' Οβ' is-product-iso-apex {f = f} f-iso f-Οβ f-Οβ prod = prod' where module fi = is-invertible f-iso open is-product prod' : is-product _ _ _ prod' .β¨_,_β© qa qb = fi.inv β prod .β¨_,_β© qa qb prod' .Οβββ¨β© = pulll (rswizzle (sym f-Οβ) fi.invl) β prod .Οβββ¨β© prod' .Οβββ¨β© = pulll (rswizzle (sym f-Οβ) fi.invl) β prod .Οβββ¨β© prod' .unique p q = sym $ lswizzle (sym (prod .unique (pulll f-Οβ β p) (pulll f-Οβ β q))) fi.invr
Categories with all binary productsπ
Categories with all binary products are quite common, so we define a module for working with them.
has-products : β {o β} β Precategory o β β Type _ has-products C = β a b β Product C a b module Binary-products {o β} (C : Precategory o β) (all-products : has-products C) where
open Cat.Reasoning C private variable A B a b c d : Ob -- Note: here and below we have to open public the aliases in a module -- with parameters so Agda picks up the display forms. module _ {a b} where open Product (all-products a b) renaming (unique to β¨β©-unique; uniqueβ to β¨β©-uniqueβ) hiding (apex) public open Functor infix 50 _ββ_
We start by defining a βglobalβ product-assigning operation.
module _ a b where open Product (all-products a b) renaming (apex to infixr 7 _ββ_) using () public
This operation extends to a bifunctor
_ββ_ : β {a b x y} β Hom a x β Hom b y β Hom (a ββ b) (x ββ y) f ββ g = β¨ f β Οβ , g β Οβ β© Γ-functor : Functor (C ΓαΆ C) C Γ-functor .Fβ (a , b) = a ββ b Γ-functor .Fβ (f , g) = f ββ g Γ-functor .F-id = sym $ β¨β©-unique id-comm id-comm Γ-functor .F-β (f , g) (h , i) = sym $ β¨β©-unique (pulll Οβββ¨β© β extendr Οβββ¨β©) (pulll Οβββ¨β© β extendr Οβββ¨β©)
We also define a handful of common morphisms.
Ξ΄ : Hom a (a ββ a) Ξ΄ = β¨ id , id β© swap : Hom (a ββ b) (b ββ a) swap = β¨ Οβ , Οβ β© Γ-assoc : Hom (a ββ (b ββ c)) ((a ββ b) ββ c) Γ-assoc = β¨ β¨ Οβ , Οβ β Οβ β© , Οβ β Οβ β©
Ξ΄-natural : is-natural-transformation Id (Γ-functor Fβ Catβ¨ Id , Id β©Cat) Ξ» _ β Ξ΄ Ξ΄-natural x y f = β¨β©-uniqueβ (cancell Οβββ¨β©) (cancell Οβββ¨β©) (pulll Οβββ¨β© β cancelr Οβββ¨β©) (pulll Οβββ¨β© β cancelr Οβββ¨β©) swap-is-iso : β {a b} β is-invertible (swap {a} {b}) swap-is-iso = make-invertible swap (β¨β©-uniqueβ (pulll Οβββ¨β© β Οβββ¨β©) ((pulll Οβββ¨β© β Οβββ¨β©)) (idr _) (idr _)) (β¨β©-uniqueβ (pulll Οβββ¨β© β Οβββ¨β©) ((pulll Οβββ¨β© β Οβββ¨β©)) (idr _) (idr _)) swap-natural : β {A B C D} ((f , g) : Hom A C Γ Hom B D) β (g ββ f) β swap β‘ swap β (f ββ g) swap-natural (f , g) = (g ββ f) β swap β‘β¨ β¨β©β _ β©β‘ β¨ (g β Οβ) β swap , (f β Οβ) β swap β© β‘β¨ apβ β¨_,_β© (pullr Οβββ¨β©) (pullr Οβββ¨β©) β©β‘ β¨ g β Οβ , f β Οβ β© β‘Λβ¨ apβ β¨_,_β© Οβββ¨β© Οβββ¨β© β©β‘Λ β¨ Οβ β (f ββ g) , Οβ β (f ββ g) β© β‘Λβ¨ β¨β©β _ β©β‘Λ swap β (f ββ g) β swap-Ξ΄ : β {A} β swap β Ξ΄ β‘ Ξ΄ {A} swap-Ξ΄ = β¨β©-unique (pulll Οβββ¨β© β Οβββ¨β©) (pulll Οβββ¨β© β Οβββ¨β©) assoc-Ξ΄ : β {a} β Γ-assoc β (id ββ Ξ΄ {a}) β Ξ΄ {a} β‘ (Ξ΄ ββ id) β Ξ΄ assoc-Ξ΄ = β¨β©-uniqueβ (pulll Οβββ¨β© β β¨β©-uniqueβ (pulll Οβββ¨β© β pulll Οβββ¨β© β pullr Οβββ¨β©) (pulll Οβββ¨β© β pullr (pulll Οβββ¨β©) β pulll (pulll Οβββ¨β©) β pullr Οβββ¨β©) (pulll (pulll Οβββ¨β©) β pullr Οβββ¨β©) (pulll (pulll Οβββ¨β©) β pullr Οβββ¨β©) β pushl (sym Οβββ¨β©)) (pulll Οβββ¨β© β pullr (pulll Οβββ¨β©) β pulll (pulll Οβββ¨β©) β pullr Οβββ¨β©) refl (pulll Οβββ¨β© β pullr Οβββ¨β©) by-Οβ : β {f f' : Hom a b} {g g' : Hom a c} β β¨ f , g β© β‘ β¨ f' , g' β© β f β‘ f' by-Οβ p = sym Οβββ¨β© β ap (Οβ β_) p β Οβββ¨β© extend-Οβ : β {f : Hom a b} {g : Hom a c} {h} β β¨ f , g β© β‘ h β f β‘ Οβ β h extend-Οβ p = sym Οβββ¨β© β ap (Οβ β_) p by-Οβ : β {f f' : Hom a b} {g g' : Hom a c} β β¨ f , g β© β‘ β¨ f' , g' β© β g β‘ g' by-Οβ p = sym Οβββ¨β© β ap (Οβ β_) p β Οβββ¨β© extend-Οβ : β {f : Hom a b} {g : Hom a c} {h} β β¨ f , g β© β‘ h β g β‘ Οβ β h extend-Οβ p = sym Οβββ¨β© β ap (Οβ β_) p Οβ-inv : β {f : Hom (a ββ b) c} {g : Hom (a ββ b) d} β (β¨β©-inv : is-invertible β¨ f , g β©) β f β is-invertible.inv β¨β©-inv β‘ Οβ Οβ-inv {f = f} {g = g} β¨β©-inv = pushl (sym Οβββ¨β©) β elimr (is-invertible.invl β¨β©-inv) Οβ-inv : β {f : Hom (a ββ b) c} {g : Hom (a ββ b) d} β (β¨β©-inv : is-invertible β¨ f , g β©) β g β is-invertible.inv β¨β©-inv β‘ Οβ Οβ-inv {f = f} {g = g} β¨β©-inv = pushl (sym Οβββ¨β©) β elimr (is-invertible.invl β¨β©-inv)
Representability of productsπ
The collection of maps into a product is equivalent to the collection of pairs of maps into and The forward direction of the equivalence is given by postcomposition of the projections, and the reverse direction by the universal property of products.
product-repr : β {a b} β (prod : Product C a b) β (x : Ob) β Hom x (Product.apex prod) β (Hom x a Γ Hom x b) product-repr prod x = IsoβEquiv Ξ» where .fst f β Οβ β f , Οβ β f .snd .is-iso.inv (f , g) β β¨ f , g β© .snd .is-iso.rinv (f , g) β Οβββ¨β© ,β Οβββ¨β© .snd .is-iso.linv f β sym (β¨β©β f) β eliml β¨β©-Ξ· where open Product prod