module Cat.Functor.Reasoning {o ℓ o' ℓ'} {𝒞 : Precategory o ℓ} {𝒟 : Precategory o' ℓ'} (F : Functor 𝒞 𝒟) where private module 𝒞 = Cat.Reasoning 𝒞 module 𝒟 = Cat.Reasoning 𝒟 open Functor F public open F-iso F public
Reasoning combinators for functors🔗
The combinators exposed in category reasoning abstract out a lot of common algebraic manipulations, and make proofs much more concise. However, once functors get involved, those combinators start to get unwieldy! Therefore, we have to write some new combinators for working with functors specifically. This module is meant to be imported qualified.
Identity morphisms🔗
module _ (a≡id : a ≡ 𝒞.id) where elim : F₁ a ≡ 𝒟.id elim = ap F₁ a≡id ∙ F-id eliml : F₁ a 𝒟.∘ f ≡ f eliml = 𝒟.eliml elim elimr : f 𝒟.∘ F₁ a ≡ f elimr = 𝒟.elimr elim intro : 𝒟.id ≡ F₁ a intro = sym F-id ∙ ap F₁ (sym a≡id) introl : f ≡ F₁ a 𝒟.∘ f introl = 𝒟.introl elim intror : f ≡ f 𝒟.∘ F₁ a intror = 𝒟.intror elim
Reassociations🔗
module _ (ab≡c : a 𝒞.∘ b ≡ c) where collapse : F₁ a 𝒟.∘ F₁ b ≡ F₁ c collapse = sym (F-∘ a b) ∙ ap F₁ ab≡c pulll : F₁ a 𝒟.∘ (F₁ b 𝒟.∘ f) ≡ F₁ c 𝒟.∘ f pulll = 𝒟.pulll collapse pullr : (f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b ≡ f 𝒟.∘ F₁ c pullr = 𝒟.pullr collapse module _ (abc≡d : a 𝒞.∘ b 𝒞.∘ c ≡ d) where collapse3 : F₁ a 𝒟.∘ F₁ b 𝒟.∘ F₁ c ≡ F₁ d collapse3 = ap (F₁ a 𝒟.∘_) (sym (F-∘ b c)) ∙ collapse abc≡d pulll3 : F₁ a 𝒟.∘ (F₁ b 𝒟.∘ (F₁ c 𝒟.∘ f)) ≡ F₁ d 𝒟.∘ f pulll3 = 𝒟.pulll3 collapse3 pullr3 : ((f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b) 𝒟.∘ F₁ c ≡ f 𝒟.∘ F₁ d pullr3 = 𝒟.pullr3 collapse3 module _ (c≡ab : c ≡ a 𝒞.∘ b) where expand : F₁ c ≡ F₁ a 𝒟.∘ F₁ b expand = sym (collapse (sym c≡ab)) pushl : F₁ c 𝒟.∘ f ≡ F₁ a 𝒟.∘ (F₁ b 𝒟.∘ f) pushl = 𝒟.pushl expand pushr : f 𝒟.∘ F₁ c ≡ (f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b pushr = 𝒟.pushr expand module _ (p : a 𝒞.∘ c ≡ b 𝒞.∘ d) where weave : F₁ a 𝒟.∘ F₁ c ≡ F₁ b 𝒟.∘ F₁ d weave = sym (F-∘ a c) ·· ap F₁ p ·· F-∘ b d extendl : F₁ a 𝒟.∘ (F₁ c 𝒟.∘ f) ≡ F₁ b 𝒟.∘ (F₁ d 𝒟.∘ f) extendl = 𝒟.extendl weave extendr : (f 𝒟.∘ F₁ a) 𝒟.∘ F₁ c ≡ (f 𝒟.∘ F₁ b) 𝒟.∘ F₁ d extendr = 𝒟.extendr weave extend-inner : f 𝒟.∘ F₁ a 𝒟.∘ F₁ c 𝒟.∘ g ≡ f 𝒟.∘ F₁ b 𝒟.∘ F₁ d 𝒟.∘ g extend-inner = 𝒟.extend-inner weave module _ (p : a 𝒞.∘ b 𝒞.∘ c ≡ a' 𝒞.∘ b' 𝒞.∘ c') where weave3 : F₁ a 𝒟.∘ F₁ b 𝒟.∘ F₁ c ≡ F₁ a' 𝒟.∘ F₁ b' 𝒟.∘ F₁ c' weave3 = ap (_ 𝒟.∘_) (sym (F-∘ b c)) ·· weave p ·· ap (_ 𝒟.∘_) (F-∘ b' c') extendl3 : F₁ a 𝒟.∘ (F₁ b 𝒟.∘ (F₁ c 𝒟.∘ f)) ≡ F₁ a' 𝒟.∘ (F₁ b' 𝒟.∘ (F₁ c' 𝒟.∘ f)) extendl3 = 𝒟.extendl3 weave3 extendr3 : ((f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b) 𝒟.∘ F₁ c ≡ ((f 𝒟.∘ F₁ a') 𝒟.∘ F₁ b') 𝒟.∘ F₁ c' extendr3 = 𝒟.extendr3 weave3 module _ (p : F₁ a 𝒟.∘ F₁ c ≡ F₁ b 𝒟.∘ F₁ d) where swap : F₁ (a 𝒞.∘ c) ≡ F₁ (b 𝒞.∘ d) swap = F-∘ a c ·· p ·· sym (F-∘ b d) popl : f 𝒟.∘ F₁ a ≡ g → f 𝒟.∘ F₁ (a 𝒞.∘ b) ≡ g 𝒟.∘ F₁ b popl p = 𝒟.pushr (F-∘ _ _) ∙ ap₂ 𝒟._∘_ p refl popr : F₁ b 𝒟.∘ f ≡ g → F₁ (a 𝒞.∘ b) 𝒟.∘ f ≡ F₁ a 𝒟.∘ g popr p = 𝒟.pushl (F-∘ _ _) ∙ ap₂ 𝒟._∘_ refl p shufflel : f 𝒟.∘ F₁ a ≡ g 𝒟.∘ h → f 𝒟.∘ F₁ (a 𝒞.∘ b) ≡ g 𝒟.∘ h 𝒟.∘ F₁ b shufflel p = popl p ∙ sym (𝒟.assoc _ _ _) shuffler : F₁ b 𝒟.∘ f ≡ g 𝒟.∘ h → F₁ (a 𝒞.∘ b) 𝒟.∘ f ≡ (F₁ a 𝒟.∘ g) 𝒟.∘ h shuffler p = popr p ∙ (𝒟.assoc _ _ _) remover : F₁ b 𝒟.∘ f ≡ 𝒟.id → F₁ (a 𝒞.∘ b) 𝒟.∘ f ≡ F₁ a remover p = popr p ∙ 𝒟.idr _ removel : f 𝒟.∘ F₁ a ≡ 𝒟.id → f 𝒟.∘ F₁ (a 𝒞.∘ b) ≡ F₁ b removel p = popl p ∙ 𝒟.idl _
Cancellation🔗
module _ (inv : a 𝒞.∘ b ≡ 𝒞.id) where annihilate : F₁ a 𝒟.∘ F₁ b ≡ 𝒟.id annihilate = collapse inv ∙ F-id cancell : F₁ a 𝒟.∘ (F₁ b 𝒟.∘ f) ≡ f cancell = 𝒟.cancell annihilate cancelr : (f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b ≡ f cancelr = 𝒟.cancelr annihilate insertl : f ≡ F₁ a 𝒟.∘ (F₁ b 𝒟.∘ f) insertl = 𝒟.insertl annihilate insertr : f ≡ (f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b insertr = 𝒟.insertr annihilate cancel-inner : (f 𝒟.∘ F₁ a) 𝒟.∘ (F₁ b 𝒟.∘ g) ≡ f 𝒟.∘ g cancel-inner = 𝒟.cancel-inner annihilate module _ (inv : a 𝒞.∘ b 𝒞.∘ c ≡ 𝒞.id) where annihilate3 : F₁ a 𝒟.∘ F₁ b 𝒟.∘ F₁ c ≡ 𝒟.id annihilate3 = collapse3 inv ∙ F-id cancell3 : F₁ a 𝒟.∘ (F₁ b 𝒟.∘ (F₁ c 𝒟.∘ f)) ≡ f cancell3 = 𝒟.cancell3 annihilate3 cancelr3 : ((f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b) 𝒟.∘ F₁ c ≡ f cancelr3 = 𝒟.cancelr3 annihilate3 insertl3 : f ≡ F₁ a 𝒟.∘ (F₁ b 𝒟.∘ (F₁ c 𝒟.∘ f)) insertl3 = 𝒟.insertl3 annihilate3 insertr3 : f ≡ ((f 𝒟.∘ F₁ a) 𝒟.∘ F₁ b) 𝒟.∘ F₁ c insertr3 = 𝒟.insertr3 annihilate3
Lenses🔗
unpackl : F₁ a 𝒟.∘ F₁ b ≡ f → F₁ (a 𝒞.∘ b) ≡ f unpackl p = F-∘ _ _ ∙ p packl : F₁ (a 𝒞.∘ b) ≡ f → F₁ a 𝒟.∘ F₁ b ≡ f packl p = sym (F-∘ _ _) ∙ p unpackr : f ≡ F₁ a 𝒟.∘ F₁ b → f ≡ F₁ (a 𝒞.∘ b) unpackr p = p ∙ sym (F-∘ _ _) packr : f ≡ F₁ (a 𝒞.∘ b) → f ≡ F₁ a 𝒟.∘ F₁ b packr p = p ∙ F-∘ _ _
Notation🔗
Writing ap F₁ p
is somewhat clunky, so we define a bit
of notation to make it somewhat cleaner.
⟨_⟩ : a ≡ b → F₁ a ≡ F₁ b ⟨_⟩ = ap F₁