module Cat.Functor.Conservative where
Conservative functorsπ
We say a functor is conservative if it reflects isomorphisms. More concretely, if is some morphism and if is an iso in then must have already been an iso in
is-conservative : Functor C D β Type _ is-conservative {C = C} {D = D} F = β {A B} {f : C .Hom A B} β is-invertible D (F .Fβ f) β is-invertible C f
As a general fact, conservative functors reflect limits and colimits that they preserve (given those (co)limits exist in the first place!).
The rough proof sketch is as follows: let be some cone in such that is a limit in and a limit in of the same diagram that is preserved by By the universal property of there exists a map from the apex of to the apex of in Furthermore, as is a limit in becomes an isomorphism in The situation is summarised by the following diagram, which shows how maps cones in to cones in (the coloured cones are assumes to be limiting).
However,
is conservative, which implies that
was an isomorphism in
all along! This means that
must be a limit in
as well (see is-invertibleβis-limitp
).
module _ {F : Functor C D} (conservative : is-conservative F) where private open _=>_ module C = Cat C module D = Cat D module F = Func F conservative-reflects-limits : β {Dia : Functor J C} β Limit Dia β preserves-limit F Dia β reflects-limit F Dia conservative-reflects-limits L-lim preservesa {K} {eps} FK-lim = is-invertibleβis-limitp {K = Limit.Ext L-lim} {epsy = Limit.cone L-lim} (Limit.has-limit L-lim) (eps .Ξ·) (Ξ» f β sym (eps .is-natural _ _ f) β C.elimr (K .F-id)) refl $ conservative $ invert where module L-lim = Limit L-lim module FL-lim = is-limit (preservesa L-lim.has-limit) module FK-lim = is-limit FK-lim uinv : D.Hom (F .Fβ L-lim.apex) (F .Fβ (K .Fβ tt)) uinv = FK-lim.universal (Ξ» j β F .Fβ (L-lim.Ο j)) (Ξ» f β sym (F .F-β _ _) β ap (F .Fβ) (L-lim.commutes f)) invert : D.is-invertible (F .Fβ (L-lim.universal (eps .Ξ·) _)) invert = D.make-invertible uinv (FL-lim.uniqueβ _ (Ξ» j β FL-lim.commutes j) (Ξ» j β F.pulll (L-lim.factors _ _) β FK-lim.factors _ _) (Ξ» j β D.idr _)) (FK-lim.uniqueβ _ (Ξ» j β FK-lim.commutes j) (Ξ» j β D.pulll (FK-lim.factors _ _) β F.collapse (L-lim.factors _ _)) (Ξ» j β D.idr _))
conservativeβequiv : β {A B} {f : C .Hom A B} β C.is-invertible f β D.is-invertible (F .Fβ f) conservativeβequiv = prop-ext! F.F-map-invertible conservative conservative^op : is-conservative F.op conservative^op inv = invertibleβco-invertible C $ conservative $ co-invertibleβinvertible D inv
Clearly, if
is conservative then so is
so the statement about colimits follows by duality.
conservative-reflects-colimits
: β {Dia : Functor J C}
β Colimit Dia
β preserves-colimit F Dia
β reflects-colimit F Dia
conservative-reflects-colimits C-colim preservesa {K} {eta} FK-colim = is-invertibleβis-colimitp {K = Colimit.Ext C-colim} {etay = Colimit.cocone C-colim} (Colimit.has-colimit C-colim) (eta .Ξ·) (Ξ» f β eta .is-natural _ _ f β C.eliml (K .F-id)) refl $ conservative $ invert where module C-colim = Colimit C-colim module FC-colim = is-colimit (preservesa C-colim.has-colimit) module FK-colim = is-colimit FK-colim uinv : D.Hom (F .Fβ (K .Fβ tt)) (F .Fβ C-colim.coapex) uinv = FK-colim.universal (Ξ» j β F .Fβ (C-colim.Ο j)) (Ξ» f β sym (F .F-β _ _) β ap (F .Fβ) (C-colim.commutes f)) invert : D.is-invertible (F .Fβ (C-colim.universal (eta .Ξ·) _)) invert = D.make-invertible uinv (FK-colim.uniqueβ _ (Ξ» j β FK-colim.commutes j) (Ξ» j β D.pullr (FK-colim.factors _ _) β F.collapse (C-colim.factors _ _)) (Ξ» j β D.idl _)) (FC-colim.uniqueβ _ (Ξ» j β FC-colim.commutes j) (Ξ» j β F.pullr (C-colim.factors _ _) β FK-colim.factors _ _) (Ξ» j β D.idl _))