module Cat.Functor.Conservative where
private variable o h oâ hâ : Level C D J : Precategory o h open Precategory open Functor open lifts-limit open creates-limit open lifts-colimit open creates-colimit open creates-lan open creates-ran
Conservative functorsđ
We say a functor is conservative if it reflects isomorphisms. More concretely, if is some morphism and if is an iso in then must have already been an iso in
is-conservative : Functor C D â Type _ is-conservative {C = C} {D = D} F = â {A B} {f : C .Hom A B} â is-invertible D (F .Fâ f) â is-invertible C f
Conservative functors reflect (co)limits that they preserveđ
As a general fact, conservative functors reflect limits and colimits that they preserve (given that those (co)limits exist in the domain).
The rough proof sketch is as follows: let be some cone in such that is a limit in and a limit in of the same diagram that is preserved by By the universal property of there exists a map from the apex of to the apex of in Furthermore, as is a limit in becomes an isomorphism in The situation is summarised by the following diagram, which shows how maps cones in to cones in (the coloured cones are assumed to be limiting).
However,
is conservative, which implies that
was an isomorphism in
all along! This means that
must be a limit in
as well (see is-invertibleâis-limitp
).
module _ {F : Functor C D} (conservative : is-conservative F) where private open _=>_ module C = Cat C module D = Cat D module F = Func F conservative-reflects-limits : â {Dia : Functor J C} â Limit Dia â preserves-limit F Dia â reflects-limit F Dia conservative-reflects-limits L-lim preserves {K} {eps} FK-lim = is-invertibleâis-limitp {K = Limit.Ext L-lim} {epsy = Limit.cone L-lim} (Limit.has-limit L-lim) (eps .η) (λ f â sym (eps .is-natural _ _ f) â C.elimr (K .F-id)) refl $ conservative $ invert where module L-lim = Limit L-lim module FL-lim = is-limit (preserves L-lim.has-limit) module FK-lim = is-limit FK-lim uinv : D.Hom (F .Fâ L-lim.apex) (F .Fâ (K .Fâ tt)) uinv = FK-lim.universal (λ j â F .Fâ (L-lim.Ï j)) (λ f â sym (F .F-â _ _) â ap (F .Fâ) (L-lim.commutes f)) invert : D.is-invertible (F .Fâ (L-lim.universal (eps .η) _)) invert = D.make-invertible uinv (FL-lim.uniqueâ FL-lim.Ï (λ j â FL-lim.commutes j) (λ j â F.pulll (L-lim.factors _ _) â FK-lim.factors _ _) (λ j â D.idr _)) (FK-lim.uniqueâ FK-lim.Ï (λ j â FK-lim.commutes j) (λ j â D.pulll (FK-lim.factors _ _) â F.collapse (L-lim.factors _ _)) (λ j â D.idr _))
As a nice consequence, a conservative functor that lifts a certain class of limits also creates those limits.
conservative+liftsâcreates-limits : â {oj âj} {J : Precategory oj âj} â lifts-limits-of J F â creates-limits-of J F conservative+liftsâcreates-limits F-lifts .has-lifts-limit = F-lifts conservative+liftsâcreates-limits F-lifts .reflects lim = conservative-reflects-limits (lifted-lim .lifted) (liftsâpreserves-limit lifted-lim) lim where lifted-lim = F-lifts (to-ran lim)
conservativeâequiv : â {A B} {f : C .Hom A B} â C.is-invertible f â D.is-invertible (F .Fâ f) conservativeâequiv = prop-ext! F.F-map-invertible conservative conservative^op : is-conservative F.op conservative^op inv = invertibleâco-invertible C $ conservative $ co-invertibleâinvertible D inv
Clearly, if
is conservative then so is
so the statement about colimits follows by duality.
conservative-reflects-colimits
: â {Dia : Functor J C}
â Colimit Dia
â preserves-colimit F Dia
â reflects-colimit F Dia
conservative-reflects-colimits C-colim preserves {K} {eta} FK-colim = is-invertibleâis-colimitp {K = Colimit.Ext C-colim} {etay = Colimit.cocone C-colim} (Colimit.has-colimit C-colim) (eta .η) (λ f â eta .is-natural _ _ f â C.eliml (K .F-id)) refl $ conservative $ invert where module C-colim = Colimit C-colim module FC-colim = is-colimit (preserves C-colim.has-colimit) module FK-colim = is-colimit FK-colim uinv : D.Hom (F .Fâ (K .Fâ tt)) (F .Fâ C-colim.coapex) uinv = FK-colim.universal (λ j â F .Fâ (C-colim.Ï j)) (λ f â sym (F .F-â _ _) â ap (F .Fâ) (C-colim.commutes f)) invert : D.is-invertible (F .Fâ (C-colim.universal (eta .η) _)) invert = D.make-invertible uinv (FK-colim.uniqueâ _ (λ j â FK-colim.commutes j) (λ j â D.pullr (FK-colim.factors _ _) â F.collapse (C-colim.factors _ _)) (λ j â D.idl _)) (FC-colim.uniqueâ _ (λ j â FC-colim.commutes j) (λ j â F.pullr (C-colim.factors _ _) â FK-colim.factors _ _) (λ j â D.idl _)) conservative+liftsâcreates-colimits : â {oj âj} {J : Precategory oj âj} â lifts-colimits-of J F â creates-colimits-of J F conservative+liftsâcreates-colimits F-lifts .has-lifts-colimit = F-lifts conservative+liftsâcreates-colimits F-lifts .reflects colim = conservative-reflects-colimits (lifted-colim .lifted) (liftsâpreserves-colimit lifted-colim) colim where lifted-colim = F-lifts (to-lan colim)
Conservative functors reflect Kan extensions that they preserveđ
We can generalise the results above to Kan extensions: conservative functors automatically reflect any Kan extensions that exist and that they preserve.
module _ {F : Functor C D} (conservative : is-conservative F) where private open _=>_ module C = Cat C module D = Cat D module F = Func F
conservative-reflects-ran : â {o â} {J' : Precategory o â} {p : Functor J J'} {Dia : Functor J C} â Ran p Dia â preserves-ran p Dia F â reflects-ran p Dia F conservative-reflects-lan : â {o â} {J' : Precategory o â} {p : Functor J J'} {Dia : Functor J C} â Lan p Dia â preserves-lan p Dia F â reflects-lan p Dia F
We start with a lemma: if is a conservative functor and is a natural transformation such that is invertible, then is invertible; this is immediate from the fact that invertibility of natural transformations is a pointwise condition. Concisely, this means that the postcomposition functor is conservative if is.
conservativeâpostcompose-conservative : â {o â} {E : Precategory o â} â is-conservative (postcompose F {D = E}) conservativeâpostcompose-conservative inv = invertibleâinvertibleâż _ λ d â conservative (is-invertibleâżâis-invertible inv d)
The idea is then the same as for (co)limits.
conservative-reflects-ran {p = p} {Dia} L-ran preserves {K} {eps} FK-ran = is-invertibleâis-ran (Ran.has-ran L-ran) $ conservativeâpostcompose-conservative invert where module L-ran = Ran L-ran module FL-ran = is-ran (preserves L-ran.has-ran) module FK-ran = is-ran FK-ran F-eps : (F Fâ L-ran.Ext) Fâ p => F Fâ Dia F-eps = nat-assoc-from (F âž L-ran.eps) uinv : F Fâ L-ran.Ext => F Fâ K uinv = FK-ran.Ï F-eps invert : is-invertibleâż (F âž L-ran.Ï eps) invert = make-invertible _ uinv (FL-ran.Ï-uniqâ F-eps (ext λ j â sym $ F.pulll (L-ran.Ï-comm ηâ j) â FK-ran.Ï-comm ηâ j) (ext λ j â sym (D.idr _))) (FK-ran.Ï-uniqâ (nat-assoc-from (F âž eps)) (ext λ j â sym $ D.pulll (FK-ran.Ï-comm ηâ j) â F.collapse (L-ran.Ï-comm ηâ j)) (ext λ j â sym (D.idr _))) conservative-reflects-lan {p = p} {Dia} L-lan preserves {K} {eta} FK-lan = is-invertibleâis-lan (Lan.has-lan L-lan) $ conservativeâpostcompose-conservative invert where module L-lan = Lan L-lan module FL-lan = is-lan (preserves L-lan.has-lan) module FK-lan = is-lan FK-lan F-eta : F Fâ Dia => (F Fâ L-lan.Ext) Fâ p F-eta = nat-assoc-to (F âž L-lan.eta) uinv : F Fâ K => F Fâ L-lan.Ext uinv = FK-lan.Ï F-eta invert : is-invertibleâż (F âž L-lan.Ï eta) invert = make-invertible _ uinv (FK-lan.Ï-uniqâ (nat-assoc-to (F âž eta)) (ext λ j â sym $ D.pullr (FK-lan.Ï-comm ηâ j) â F.collapse (L-lan.Ï-comm ηâ j)) (ext λ j â sym (D.idl _))) (FL-lan.Ï-uniqâ F-eta (ext λ j â sym $ F.pullr (L-lan.Ï-comm ηâ j) â FK-lan.Ï-comm ηâ j) (ext λ j â sym (D.idl _))) conservative+liftsâcreates-ran : â {o â} {J' : Precategory o â} {p : Functor J J'} â lifts-ran-along p F â creates-ran-along p F conservative+liftsâcreates-ran F-lifts .has-lifts-ran = F-lifts conservative+liftsâcreates-ran F-lifts .reflects ran = conservative-reflects-ran lifted-ran.lifted (liftsâpreserves-ran lifted-ran) ran where lifted-ran = F-lifts (to-ran ran) module lifted-ran = lifts-ran lifted-ran conservative+liftsâcreates-lan : â {o â} {J' : Precategory o â} {p : Functor J J'} â lifts-lan-along p F â creates-lan-along p F conservative+liftsâcreates-lan F-lifts .has-lifts-lan = F-lifts conservative+liftsâcreates-lan F-lifts .reflects lan = conservative-reflects-lan lifted-lan.lifted (liftsâpreserves-lan lifted-lan) lan where lifted-lan = F-lifts (to-lan lan) module lifted-lan = lifts-lan lifted-lan