Comonadic adjunctions🔗

An adjunction between functors and is comonadic if the induced comparison functor (where the right-hand side is the category of Coalgebras of the comonad of the adjunction) is an equivalence of categories. This dualises the theory of monadic adjunctions.

module
  Cat.Functor.Adjoint.Comonadic
  {o₁ h₁ o₂ h₂ : _}
  {C : Precategory o₁ h₁}
  {D : Precategory o₂ h₂}
  {L : Functor C D} {R : Functor D C}
  (L⊣R : L  R)
  where

The composition of L.₁ with the adjunction unit natural transformation gives L a Coalgebra structure, thus extending L to a functor

Comparison-CoEM : Functor C (Coalgebras L∘R)
Comparison-CoEM .F₀ x = L.₀ x , alg where
  alg : Coalgebra-on L∘R (L.₀ x)
  alg .Coalgebra-on.ρ = L.₁ (adj.unit.η _)
  alg .Coalgebra-on.ρ-counit = adj.zig
  alg .Coalgebra-on.ρ-comult = L.weave (sym (adj.unit.is-natural _ _ _))
Construction of the functorial action of Comparison-CoEM
Comparison-CoEM .F₁ x .hom = L.₁ x
Comparison-CoEM .F₁ x .preserves = L.weave (sym (adj.unit.is-natural _ _ _))
Comparison-CoEM .F-id    = ext L.F-id
Comparison-CoEM .F-∘ f g = ext (L.F-∘ _ _)

An adjunction is comonadic if Comparison-CoEM is an equivalence of categories, thus exhibiting as the category of

is-comonadic : Type _
is-comonadic = is-equivalence Comparison-CoEM