The comonad from an adjunction🔗
module Cat.Functor.Adjoint.Comonad {o₁ h₁ o₂ h₂ : _} {C : Precategory o₁ h₁} {D : Precategory o₂ h₂} {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where
private module C = Precategory C module D = Precategory D module L = Functor L module R = Functor R module adj = _⊣_ L⊣R
Every adjunction gives rise to a comonad, where the underlying functor is This is dual to the construction of the monad from an adjunction.
Adjunction→Comonad : Comonad-on (L F∘ R)
The counit of the comonad is just the adjunction counit, and the comultiplication comes from the unit.
Adjunction→Comonad .counit = adj.counit Adjunction→Comonad .comult = NT (λ x → L.₁ (adj.η (R.₀ x))) λ x y f → L.₁ (adj.η (R.₀ y)) D.∘ L.₁ (R.₁ f) ≡˘⟨ L.F-∘ _ _ ⟩≡˘ L.₁ (adj.η (R.₀ y) C.∘ R.₁ f) ≡⟨ ap L.₁ (adj.unit.is-natural _ _ _) ⟩≡ L.₁ (R.₁ (L.₁ (R.₁ f)) C.∘ adj.η (R.₀ x)) ≡⟨ L.F-∘ _ _ ⟩≡ L.₁ (R.₁ (L.₁ (R.₁ f))) D.∘ L.₁ (adj.η (R.₀ x)) ∎
The comonad laws follow from the zig-zag identities. In fact, the
right identity law is exactly the zig
identity.
Adjunction→Comonad .δ-unitr {x} = adj.zig
The others are slightly more involved.
Adjunction→Comonad .δ-unitl {x} = path where abstract path : L.₁ (R.₁ (adj.ε x)) D.∘ L.₁ (adj.η (R.F₀ x)) ≡ D.id path = L.₁ (R.₁ (adj.ε _)) D.∘ L.₁ (adj.η _) ≡⟨ sym (L.F-∘ _ _) ⟩≡ L.₁ (R.₁ (adj.ε _) C.∘ adj.η _) ≡⟨ ap L.₁ adj.zag ⟩≡ L.₁ C.id ≡⟨ L.F-id ⟩≡ D.id ∎ Adjunction→Comonad .δ-assoc {x} = path where abstract path : L.₁ (R.₁ (L.₁ (adj.η (R.F₀ x)))) D.∘ L.₁ (adj.η _) ≡ L.₁ (adj.η (R .F₀ (L.F₀ (R.F₀ x)))) D.∘ L.₁ (adj.η _) path = L.₁ (R.₁ (L.₁ (adj.η _))) D.∘ L.₁ (adj.η _) ≡⟨ sym (L.F-∘ _ _) ⟩≡ L.₁ (R.₁ (L.₁ (adj.η _)) C.∘ adj.η _) ≡˘⟨ ap L.₁ (adj.unit.is-natural _ _ _) ⟩≡˘ L.₁ (adj.η _ C.∘ adj.η _) ≡⟨ L.F-∘ _ _ ⟩≡ L.₁ (adj.η _) D.∘ L.₁ (adj.η _) ∎