module Cat.Diagram.Comonad where
Comonadsπ
A comonad on a category is dual to a monad on instead of a unit and multiplication we have a counit and comultiplication More generally, we can define what it means to equip a fixed functor with the structure of a comonad.
record Comonad-on (W : Functor C C) : Type (o β β) where field counit : W => Id comult : W => (W Fβ W)
module counit = _=>_ counit renaming (Ξ· to Ξ΅) module comult = _=>_ comult renaming (Ξ· to Ξ΄) open Functor W renaming (Fβ to Wβ ; Fβ to Wβ ; F-id to W-id ; F-β to W-β) public open counit using (Ξ΅) public open comult using (Ξ΄) public
We also have equations governing the counit and comultiplication. Unsurprisingly, these are dual to the equations of a monad.
field Ξ΄-idl : β {x} β Wβ (Ξ΅ x) β Ξ΄ x β‘ id Ξ΄-idr : β {x} β Ξ΅ (Wβ x) β Ξ΄ x β‘ id Ξ΄-assoc : β {x} β Wβ (Ξ΄ x) β Ξ΄ x β‘ Ξ΄ (Wβ x) β Ξ΄ x