module Order.Semilattice.Join.NAry where
n-Ary joins🔗
Let be a join semilattice, and let be a finite family of elements of We can compute joins of in via induction on the size of the family.
⋃ᶠ : ∀ {n} (f : Fin n → ⌞ P ⌟) → ⌞ P ⌟ ⋃ᶠ {0} f = bot ⋃ᶠ {1} f = f fzero ⋃ᶠ {suc (suc n)} f = f fzero ∪ ⋃ᶠ (λ i → f (fsuc i)) ⋃ᶠ-inj : ∀ {n} {f : Fin n → Ob} → (i : Fin n) → f i ≤ ⋃ᶠ f ⋃ᶠ-inj i with fin-view i ⋃ᶠ-inj {1} .fzero | zero = ≤-refl ⋃ᶠ-inj {suc (suc n)} .fzero | zero = l≤∪ ⋃ᶠ-inj {suc (suc n)} .(fsuc i) | suc i = ≤-trans (⋃ᶠ-inj i) r≤∪ ⋃ᶠ-universal : ∀ {n} {f : Fin n → Ob} (x : Ob) → (∀ i → f i ≤ x) → ⋃ᶠ f ≤ x ⋃ᶠ-universal {0} x p = ¡ ⋃ᶠ-universal {1} x p = p fzero ⋃ᶠ-universal {suc (suc n)} x p = ∪-universal _ (p fzero) (⋃ᶠ-universal x (p ⊙ fsuc)) Finite-lubs : ∀ {n} (f : Fin n → Ob) → Lub P f Finite-lubs f .lub = ⋃ᶠ f Finite-lubs f .has-lub .fam≤lub = ⋃ᶠ-inj Finite-lubs f .has-lub .least = ⋃ᶠ-universal
Furthermore, must also have joins of finitely indexed sets. Let be a finitely indexed set with enumeration and let be an family in is a finite family in so it must have a least upper bound. Furthermore, is surjective, so it must reflect the least upper bound.
⋃ᶠˢ : Finset ⌞ P ⌟ → ⌞ P ⌟ ⋃ᶠˢ [] = bot ⋃ᶠˢ (x ∷ xs) = x ∪ ⋃ᶠˢ xs ⋃ᶠˢ (∷-dup x xs i) = along i $ x ∪ x ∪ ⋃ᶠˢ xs ≡⟨ ∪.pulll ∪-idem ⟩≡ x ∪ ⋃ᶠˢ xs ∎ ⋃ᶠˢ (∷-swap x y xs i) = along i $ x ∪ y ∪ ⋃ᶠˢ xs ≡⟨ ∪.extendl ∪-comm ⟩≡ y ∪ x ∪ ⋃ᶠˢ xs ∎ ⋃ᶠˢ (squash x y p q i j) = hlevel 2 (⋃ᶠˢ x) (⋃ᶠˢ y) (λ i → ⋃ᶠˢ (p i)) (λ i → ⋃ᶠˢ (q i)) i j abstract ⋃ᶠˢ-inj : {x : ⌞ P ⌟} (xs : Finset ⌞ P ⌟) → x ∈ xs → x ≤ ⋃ᶠˢ xs ⋃ᶠˢ-inj {x} xs = ∈ᶠˢ-elim (λ xs _ → x ≤ ⋃ᶠˢ xs) l≤∪ (λ q r → ≤-trans r r≤∪) xs ⋃ᶠˢ-univ : (xs : Finset ⌞ P ⌟) {o : ⌞ P ⌟} → ((x : ⌞ P ⌟) → x ∈ᶠˢ xs → x ≤ o) → ⋃ᶠˢ xs ≤ o ⋃ᶠˢ-univ xs {o} = Finset-elim-prop (λ xs → ((x : ⌞ P ⌟) → x ∈ᶠˢ xs → x ≤ o) → ⋃ᶠˢ xs ≤ o) (λ _ → ¡) (λ x ih le → ∪-universal o (le x hereₛ) (ih (λ y w → le y (thereₛ w)))) xs ⋃ᶠˢ-union : (xs ys : Finset ⌞ P ⌟) → ⋃ᶠˢ (xs <> ys) ≡ (⋃ᶠˢ xs ∪ ⋃ᶠˢ ys) ⋃ᶠˢ-union xs ys = ≤-antisym (⋃ᶠˢ-univ (xs <> ys) λ x m → case ∈ᶠˢ-union _ xs ys m of λ where (inl x) → ≤-trans (⋃ᶠˢ-inj xs x) l≤∪ (inr x) → ≤-trans (⋃ᶠˢ-inj ys x) r≤∪) (∪-universal _ (⋃ᶠˢ-univ xs λ x m → ⋃ᶠˢ-inj (xs <> ys) (unionl-∈ᶠˢ _ xs ys m)) (⋃ᶠˢ-univ ys λ x m → ⋃ᶠˢ-inj (xs <> ys) (unionr-∈ᶠˢ _ xs ys m)))
opaque Finitely-indexed-lubs : ∀ {ℓᵢ} {I : Type ℓᵢ} → is-finitely-indexed I → (f : I → Ob) → Lub P f Finitely-indexed-lubs {I = I} fin-indexed f = case fin-indexed of λ cov → cover-reflects-lub (cov .is-cover) (Finite-lubs (f ⊙ cov .cover)) where open Finite-cover
Join semilattice homomorphisms must also preserve finite joins. This follows from another induction on the size of the family we are taking a join over.
module _ {o ℓ o' ℓ'} {P : Poset o ℓ} {Q : Poset o' ℓ'} {f : Monotone P Q} {Pl Ql} (hom : is-join-slat-hom f Pl Ql) where abstract private module Pₗ = is-join-semilattice Pl module Qₗ = is-join-semilattice Ql open is-join-slat-hom hom pres-⋃ᶠ : ∀ {n} (k : Fin n → ⌞ P ⌟) → f · (⋃ᶠ Pl k) ≡ ⋃ᶠ Ql (apply f ⊙ k) pres-⋃ᶠ {n = 0} k = pres-bot pres-⋃ᶠ {n = 1} k = refl pres-⋃ᶠ {n = suc (suc n)} k = f · (k fzero Pₗ.∪ ⋃ᶠ Pl (k ⊙ fsuc)) ≡⟨ pres-∪ _ _ ⟩≡ f · (k fzero) Qₗ.∪ f · (⋃ᶠ Pl (k ⊙ fsuc)) ≡⟨ ap₂ Qₗ._∪_ refl (pres-⋃ᶠ (k ⊙ fsuc)) ⟩≡ ⋃ᶠ Ql (apply f ⊙ k) ∎ pres-⋃ᶠˢ : ∀ xs → f · ⋃ᶠˢ Pl xs ≡ ⋃ᶠˢ Ql (map (f ·_) xs) pres-⋃ᶠˢ = Finset-elim-prop _ pres-bot (λ x ih → pres-∪ _ _ ∙ ap₂ Qₗ._∪_ refl ih) pres-fin-lub : ∀ {n} (k : Fin n → ⌞ P ⌟) (x : ⌞ P ⌟) → is-lub P k x → is-lub Q (λ x → f · (k x)) (f · x) pres-fin-lub k x lub = done where rem₁ : x ≡ ⋃ᶠ Pl k rem₁ = lub-unique lub (Finite-lubs Pl k .has-lub) rem₂ : f · x ≡ ⋃ᶠ Ql (apply f ⊙ k) rem₂ = ap (apply f) rem₁ ∙ pres-⋃ᶠ k done : is-lub Q (λ x → f · k x) (f · x) done = subst (is-lub Q (apply f ⊙ k)) (sym rem₂) (Finite-lubs Ql _ .has-lub) pres-finite-lub : ∀ {ℓᵢ} {I : Type ℓᵢ} → Finite I → (k : I → ⌞ P ⌟) → (x : ⌞ P ⌟) → is-lub P k x → is-lub Q (λ x → f · k x) (f · x) pres-finite-lub I-finite k x P-lub = ∥-∥-out! do li ← I-finite let enum = listing→equiv-fin li pure $ cast-is-lub (enum e⁻¹) (λ _ → refl) $ pres-fin-lub (k ⊙ Equiv.from enum) x $ cast-is-lub enum (λ x → sym (ap k (Equiv.η enum x))) P-lub
As a corollary, join semilattice homomorphisms must also preserve joins of finitely-indexed sets.
pres-finitely-indexed-lub : ∀ {ℓᵢ} {I : Type ℓᵢ} → is-finitely-indexed I → (k : I → ⌞ P ⌟) → (x : ⌞ P ⌟) → is-lub P k x → is-lub Q (λ x → f · k x) (f · x) pres-finitely-indexed-lub I-fin-indexed k x P-lub = case I-fin-indexed of λ cov → cover-reflects-is-lub (Finite-cover.is-cover cov) $ pres-fin-lub (k ⊙ Finite-cover.cover cov) x $ cover-preserves-is-lub (Finite-cover.is-cover cov) P-lub