module Order.Diagram.Lub where
Least upper bounds🔗
A lub (short for least upper bound) for a family of elements is, as the name implies, a least elemnet among the upper boudns of the Being an upper bound means that we have for all Being the least upper bound means that if we’re given some other satisfying (for each then we have
The same observation about the naming of glbs vs meets applies to lubs, with the binary name being join.
record is-lub {ℓᵢ} {I : Type ℓᵢ} (F : I → Ob) (lub : Ob) : Type (o ⊔ ℓ ⊔ ℓᵢ) where no-eta-equality field fam≤lub : ∀ i → F i ≤ lub least : (ub' : Ob) → (∀ i → F i ≤ ub') → lub ≤ ub' record Lub {ℓᵢ} {I : Type ℓᵢ} (F : I → Ob) : Type (o ⊔ ℓ ⊔ ℓᵢ) where no-eta-equality field lub : Ob has-lub : is-lub F lub open is-lub has-lub public
unquoteDecl H-Level-is-lub = declare-record-hlevel 1 H-Level-is-lub (quote is-lub) module _ {o ℓ} {P : Poset o ℓ} where open Order.Reasoning P open is-lub lub-unique : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {x y} → is-lub P F x → is-lub P F y → x ≡ y lub-unique {x = x} {y = y} lub lub' = ≤-antisym (lub .least y (lub' .fam≤lub)) (lub' .least x (lub .fam≤lub)) Lub-is-prop : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} → is-prop (Lub P F) Lub-is-prop p q i .Lub.lub = lub-unique (Lub.has-lub p) (Lub.has-lub q) i Lub-is-prop {F = F} p q i .Lub.has-lub = is-prop→pathp (λ i → hlevel {T = is-lub _ _ (lub-unique (Lub.has-lub p) (Lub.has-lub q) i)} 1) (Lub.has-lub p) (Lub.has-lub q) i instance H-Level-Lub : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {n} → H-Level (Lub P F) (suc n) H-Level-Lub = prop-instance Lub-is-prop lift-is-lub : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} {lub} → is-lub P F lub → is-lub P (F ⊙ lower {ℓ = ℓᵢ'}) lub lift-is-lub is .fam≤lub (lift ix) = is .fam≤lub ix lift-is-lub is .least ub' le = is .least ub' (le ⊙ lift) lift-lub : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} → Lub P F → Lub P (F ⊙ lower {ℓ = ℓᵢ'}) lift-lub lub .Lub.lub = Lub.lub lub lift-lub lub .Lub.has-lub = lift-is-lub (Lub.has-lub lub) lower-is-lub : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} {lub} → is-lub P (F ⊙ lower {ℓ = ℓᵢ'}) lub → is-lub P F lub lower-is-lub is .fam≤lub ix = is .fam≤lub (lift ix) lower-is-lub is .least ub' le = is .least ub' (le ⊙ lower) lower-lub : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {F : I → Ob} → Lub P (F ⊙ lower {ℓ = ℓᵢ'}) → Lub P F lower-lub lub .Lub.lub = Lub.lub lub lower-lub lub .Lub.has-lub = lower-is-lub (Lub.has-lub lub)
module _ {ℓᵢ ℓᵢ'} {Ix : Type ℓᵢ} {Im : Type ℓᵢ'} {f : Ix → Im} {F : Im → Ob} (surj : is-surjective f) where cover-preserves-is-lub : ∀ {lub} → is-lub P F lub → is-lub P (F ⊙ f) lub cover-preserves-is-lub l .fam≤lub x = l .fam≤lub (f x) cover-preserves-is-lub l .least ub' le = l .least ub' λ i → ∥-∥-out! do (i' , p) ← surj i pure (≤-trans (≤-refl' (ap F (sym p))) (le i')) cover-preserves-lub : Lub P F → Lub P (F ⊙ f) cover-preserves-lub l .Lub.lub = _ cover-preserves-lub l .Lub.has-lub = cover-preserves-is-lub (l .Lub.has-lub) cover-reflects-is-lub : ∀ {lub} → is-lub P (F ⊙ f) lub → is-lub P F lub cover-reflects-is-lub l .fam≤lub x = ∥-∥-out! do (y , p) ← surj x pure (≤-trans (≤-refl' (ap F (sym p))) (l .fam≤lub y)) cover-reflects-is-lub l .least ub' le = l .least ub' λ i → le (f i) cover-reflects-lub : Lub P (F ⊙ f) → Lub P F cover-reflects-lub l .Lub.lub = _ cover-reflects-lub l .Lub.has-lub = cover-reflects-is-lub (l .Lub.has-lub) cast-is-lub : ∀ {ℓᵢ ℓᵢ'} {I : Type ℓᵢ} {I' : Type ℓᵢ'} {F : I → Ob} {G : I' → Ob} {lub} → (e : I ≃ I') → (∀ i → F i ≡ G (Equiv.to e i)) → is-lub P F lub → is-lub P G lub cast-is-lub {G = G} e p has-lub .fam≤lub i' = ≤-trans (≤-refl' (sym (p (Equiv.from e i') ∙ ap G (Equiv.ε e i')))) (has-lub .fam≤lub (Equiv.from e i')) cast-is-lub e p has-lub .least ub G≤ub = has-lub .least ub (λ i → ≤-trans (≤-refl' (p i)) (G≤ub (Equiv.to e i))) cast-is-lubᶠ : ∀ {ℓᵢ} {I : Type ℓᵢ} {F G : I → Ob} {lub} → (∀ i → F i ≡ G i) → is-lub P F lub → is-lub P G lub cast-is-lubᶠ {lub = lub} p has-lub = cast-is-lub (_ , id-equiv) p has-lub
Let be a family. If there is some such that for all then is the least upper bound of
fam-bound→is-lub : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} → (i : I) → (∀ j → F j ≤ F i) → is-lub P F (F i) fam-bound→is-lub i ge .fam≤lub = ge fam-bound→is-lub i ge .least y le = le i
If is the least upper bound of a constant family, then must be equal to every member of the family.
lub-of-const-fam : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {x} → (∀ i j → F i ≡ F j) → is-lub P F x → ∀ i → F i ≡ x lub-of-const-fam {F = F} is-const x-lub i = ≤-antisym (fam≤lub x-lub i) (least x-lub (F i) λ j → ≤-refl' (sym (is-const i j)))
Furthermore, if is a constant family and is merely inhabited, then has a least upper bound.
const-inhabited-fam→is-lub : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} {x} → (∀ i → F i ≡ x) → ∥ I ∥ → is-lub P F x const-inhabited-fam→is-lub {I = I} {F = F} {x = x} is-const = rec! mk-is-lub where mk-is-lub : I → is-lub P F x mk-is-lub i .is-lub.fam≤lub j = ≤-refl' (is-const j) mk-is-lub i .is-lub.least y le = x =˘⟨ is-const i ⟩=˘ F i ≤⟨ le i ⟩≤ y ≤∎ const-inhabited-fam→lub : ∀ {ℓᵢ} {I : Type ℓᵢ} {F : I → Ob} → (∀ i j → F i ≡ F j) → ∥ I ∥ → Lub P F const-inhabited-fam→lub {I = I} {F = F} is-const = rec! mk-lub where mk-lub : I → Lub P F mk-lub i .Lub.lub = F i mk-lub i .Lub.has-lub = const-inhabited-fam→is-lub (λ j → is-const j i) (inc i)