module Cat.Functor.Morphism {o ℓ o' ℓ'} {𝒞 : Precategory o ℓ} {𝒟 : Precategory o' ℓ'} (F : Functor 𝒞 𝒟) where
private module 𝒞 = Cat.Reasoning 𝒞 module 𝒟 = Cat.Reasoning 𝒟 open Cat.Functor.Reasoning F private variable A B C : 𝒞.Ob a b c d : 𝒞.Hom A B X Y Z : 𝒟.Ob f g h i : 𝒟.Hom X Y
Actions of functors on morphisms🔗
This module describes how various classes of functors act on designated collections of morphisms.
First, some general definitions. Let be a collection of morphisms in A functor preserves if implies that
preserves-monos : Type _ preserves-monos = ∀ {a b : 𝒞.Ob} {f : 𝒞.Hom a b} → 𝒞.is-monic f → 𝒟.is-monic (F₁ f) preserves-epis : Type _ preserves-epis = ∀ {a b : 𝒞.Ob} {f : 𝒞.Hom a b} → 𝒞.is-epic f → 𝒟.is-epic (F₁ f)
preserves-strong-epis : Type _ preserves-strong-epis = ∀ {a b : 𝒞.Ob} {f : 𝒞.Hom a b} → is-strong-epi 𝒞 f → is-strong-epi 𝒟 (F₁ f)
Likewise, a functor reflects if implies that
reflects-monos : Type _ reflects-monos = ∀ {a b : 𝒞.Ob} {f : 𝒞.Hom a b} → 𝒟.is-monic (F₁ f) → 𝒞.is-monic f reflects-epis : Type _ reflects-epis = ∀ {a b : 𝒞.Ob} {f : 𝒞.Hom a b} → 𝒟.is-epic (F₁ f) → 𝒞.is-epic f
Functors that reflect invertible morphisms are called conservative, and are notable enough to deserve their own name and page!
Faithful functors🔗
Faithful functors reflect monomorphisms and epimorphisms. We will only comment on the proof regarding monomorphisms, since the argument for epimorphisms is formally dual. Let be monic in and let be a pair of morphisms in such that Because preserves all commutative diagrams, is monic, so Finally, is faithful, so we can deduce
module _ (faithful : is-faithful F) where faithful→reflects-mono : 𝒟.is-monic (F₁ a) → 𝒞.is-monic a faithful→reflects-mono {a = a} F[a]-monic b c p = faithful (F[a]-monic (F₁ b) (F₁ c) (weave p)) faithful→reflects-epi : 𝒟.is-epic (F₁ a) → 𝒞.is-epic a faithful→reflects-epi {a = a} F[a]-epic b c p = faithful (F[a]-epic (F₁ b) (F₁ c) (weave p))
Likewise, faithful functors reflect all diagrams: this means that if and either form a section/retraction pair or an isomorphism, then it must have been the case that and already did.
faithful→reflects-section-of : (F₁ a) 𝒟.section-of (F₁ b) → a 𝒞.section-of b faithful→reflects-section-of p = faithful (F-∘ _ _ ∙ p ∙ sym F-id) faithful→reflects-retract-of : (F₁ a) 𝒟.retract-of (F₁ b) → a 𝒞.retract-of b faithful→reflects-retract-of p = faithful→reflects-section-of p faithful→reflects-inverses : 𝒟.Inverses (F₁ a) (F₁ b) → 𝒞.Inverses a b faithful→reflects-inverses ab-inv .𝒞.Inverses.invl = faithful→reflects-section-of (𝒟.Inverses.invl ab-inv) faithful→reflects-inverses ab-inv .𝒞.Inverses.invr = faithful→reflects-section-of (𝒟.Inverses.invr ab-inv)
Fully faithful, essentially surjective functors🔗
If a functor is fully faithful and essentially surjective, then it preserves all mono- and epimorphisms. Keep in mind that, since we have not assumed that the categories involved are univalent, this condition is slightly weaker than being an equivalence of categories.
Let be a mono, and let be a pair of morphisms in satisfying that Since is eso, there merely exists a with Because is also full, there must merely exist a pair of morphisms satisfying and
module _ (ff : is-fully-faithful F) (eso : is-eso F) where ff+eso→preserves-mono : 𝒞.is-monic a → 𝒟.is-monic (F₁ a) ff+eso→preserves-mono {a = a} a-monic {x} f g p = ∥-∥-out! do (x* , i) ← eso x (f* , q) ← ff→full {F = F} ff (f 𝒟.∘ 𝒟.to i) (g* , r) ← ff→full {F = F} ff (g 𝒟.∘ 𝒟.to i)
Next, note that this follows from faithfulness of and our hypothesis that
let s = ff→faithful {F = F} ff $ F₁ (a 𝒞.∘ f*) ≡⟨ F-∘ _ _ ∙ 𝒟.pushr q ⟩≡ (F₁ a 𝒟.∘ f) 𝒟.∘ 𝒟.to i ≡⟨ ap₂ 𝒟._∘_ p refl ⟩≡ (F₁ a 𝒟.∘ g) 𝒟.∘ 𝒟.to i ≡⟨ 𝒟.pullr (sym r) ∙ sym (F-∘ _ _) ⟩≡ F₁ (a 𝒞.∘ g*) ∎
To wrap things up, recall that is monic, so and However, and by definition, so we can deduce that Finally, isomorphisms are epic, so we can cancel on the left, concluding that
pure $ 𝒟.iso→epic i f g $ f 𝒟.∘ 𝒟.to i ≡˘⟨ q ⟩≡˘ F₁ f* ≡⟨ ap F₁ (a-monic f* g* s) ⟩≡ F₁ g* ≡⟨ r ⟩≡ g 𝒟.∘ 𝒟.to i ∎
As mentioned above, the same holds for epimorphisms. Since the proof is formally dual to the case above, we will not dwell on it.
ff+eso→preserves-epi : 𝒞.is-epic a → 𝒟.is-epic (F₁ a) ff+eso→preserves-epi {a = a} a-epic {x} f g p = ∥-∥-out! do (x* , i) ← eso x (f* , q) ← ff→full {F = F} ff (𝒟.from i 𝒟.∘ f) (g* , r) ← ff→full {F = F} ff (𝒟.from i 𝒟.∘ g) let s = F-∘ _ _ ∙ 𝒟.pushl q ∙ ap₂ 𝒟._∘_ refl p ∙ 𝒟.pulll (sym r) ∙ sym (F-∘ _ _) pure $ 𝒟.iso→monic (i 𝒟.Iso⁻¹) f g $ sym q ·· ap F₁ (a-epic f* g* (ff→faithful {F = F} ff s)) ·· r
Left and right adjoints🔗
If we are given an adjunction then the right adjoint preserves monomorphisms. Fix a mono and let satisfy We want to show and, by the adjunction, it will suffice to show that Since is a monomorphism, we can again reduce this to showing
which follows by a quick calculation.
module _ {L : Functor 𝒟 𝒞} (L⊣F : L ⊣ F) where private module L = Cat.Functor.Reasoning L open _⊣_ L⊣F
right-adjoint→preserves-monos : 𝒞.is-monic a → 𝒟.is-monic (F₁ a) right-adjoint→preserves-monos {a = a} a-monic f g p = R-adjunct.injective L⊣F $ a-monic _ _ $ a 𝒞.∘ ε _ 𝒞.∘ L.₁ f ≡⟨ 𝒞.pulll (sym (counit.is-natural _ _ _)) ⟩≡ (ε _ 𝒞.∘ L.₁ (F₁ a)) 𝒞.∘ L.₁ f ≡⟨ L.extendr p ⟩≡ (ε _ 𝒞.∘ L.₁ (F₁ a)) 𝒞.∘ L.₁ g ≡⟨ 𝒞.pushl (counit.is-natural _ _ _) ⟩≡ a 𝒞.∘ ε _ 𝒞.∘ L.₁ g ∎
Dualizing this argument, we can show that left adjoints preserve epimorphisms.
module _ {R : Functor 𝒟 𝒞} (F⊣R : F ⊣ R) where private module R = Cat.Functor.Reasoning R open _⊣_ F⊣R left-adjoint→preserves-epis : 𝒞.is-epic a → 𝒟.is-epic (F₁ a) left-adjoint→preserves-epis {a = a} a-epic f g p = L-adjunct.injective F⊣R $ a-epic _ _ $ 𝒞.pullr (unit.is-natural _ _ _) ∙ R.extendl p ∙ 𝒞.pushr (sym (unit.is-natural _ _ _))