module Cat.Displayed.Instances.Subobjects
  {o } (B : Precategory o )
  where

The fibration of subobjects🔗

Given a base category we can define the displayed category of subobjects over This is, in essence, a restriction of the codomain fibration of but with our attention restricted to the monomorphisms rather than arbitrary maps

record Subobject (y : Ob) : Type (o  ) where
  no-eta-equality
  field
    {dom} : Ob
    map   : Hom dom y
    monic : is-monic map

open Subobject public

To make formalisation smoother, we define our own version of displayed morphisms in the subobject fibration, rather than reusing those of the fundamental self-indexing. The reason for this is quite technical: the type of maps in the self-indexing is only dependent (the domains and) the morphisms being considered, meaning nothing constrains the proofs that these are monomorphisms, causing unification to fail at the determining the full Subobjects involved.

record ≤-over {x y} (f : Hom x y) (a : Subobject x) (b : Subobject y) : Type  where
  no-eta-equality
  field
    map : Hom (a .dom) (b .dom)
    com : f  Subobject.map a  Subobject.map b  map

open ≤-over public

We will denote the type of maps in the subobject fibration by since there is at most one such map: if satisfy then, since is a mono,

Setting up the displayed category is now nothing more than routine verification: the identity map satisfies and commutative squares can be pasted together.

Subobjects : Displayed B (o  ) 
Subobjects .Ob[_] y = Subobject y
Subobjects .Hom[_]  = ≤-over
Subobjects .Hom[_]-set f a b = hlevel 2

Subobjects .id' .map = id
Subobjects .id' .com = id-comm-sym

Subobjects ._∘'_ α β .map = α .map  β .map
Subobjects ._∘'_ α β .com = pullr (β .com)  extendl (α .com)

The displayed category of subobjects comes with a forgetful vertical functor to the fundamental fibration of

Forget-subobjects : Vertical-functor Subobjects (Slices B)
Forget-subobjects .F₀' m = cut (m .map)
Forget-subobjects .F₁' f = record { map = f .map ; com = sym (f .com) }
Forget-subobjects .F-id' = Slice-path refl
Forget-subobjects .F-∘' = Slice-path refl

This functor is fully faithful, hence it reflects cartesian morphisms: a pullback square in determines a cartesian morphism in the subobject fibration. In fact, the uniqueness part follows automatically from the uniqueness of maps in the subobject fibration!

Forget-sub-full
  :  {a b} {a' : Subobject a} {b' : Subobject b} {f : Hom a b}
   Slice-hom B f (Forget-subobjects .F₀' a') (Forget-subobjects .F₀' b')
   ≤-over f a' b'
Forget-sub-full f' = record { map = f' .map ; com = sym (f' .com) }

Forget-sub-reflects-cartesian : reflects-cartesian-maps Forget-subobjects
Forget-sub-reflects-cartesian .reflects cart = record
  { universal = λ m m'  Forget-sub-full
      (cart .universal m (Forget-subobjects .F₁' m'))
  ; commutes = λ _ _  prop!
  ; unique = λ _ _  prop!
  }

As a fibration🔗

By exactly the same construction as for the fundamental self-indexing, if has pullbacks, the displayed category we have built is actually a fibration. The construction is slightly simpler now that we have no need to worry about uniqueness, but we can remind ourselves of the universal property:

On the first stage, we are given the data in black: we can complete an open span to a Cartesian square (in blue) by pulling back along this base change remains a monomorphism. Since a pullback square is cartesian, we are done.

  -- The blue square:
  pullback-subobject
    :  {X Y} (h : Hom X Y) (g : Subobject Y)
     Subobject X
  pullback-subobject h g .dom = pb h (g .map) .apex
  pullback-subobject h g .map = pb h (g .map) .p₁
  pullback-subobject h g .monic = mon where abstract
    mon : is-monic (pb h (g .map) .p₁)
    mon = is-monic→pullback-is-monic
      (g .monic) (rotate-pullback (pb h (g .map) .has-is-pb))

  Subobject-fibration : Cartesian-fibration Subobjects
  Subobject-fibration f y' = l where
    it : Pullback _ _ _
    it = pb (y' .map) f
    l : Cartesian-lift Subobjects f y'

    l .x' = pullback-subobject f y'
    l .lifting .map = pb f (y' .map) .p₂
    l .lifting .com = pb f (y' .map) .square

    l .cartesian = Forget-sub-reflects-cartesian .reflects
      (pullback→cartesian B (pb _ _ .has-is-pb))

As a (weak) cocartesian fibration🔗

If has an image factorisation for every morphism, then its fibration of subobjects is a weak cocartesian fibration. By a general fact, if also has pullbacks, then is a cocartesian fibration.

Subobject-weak-opfibration
  : (∀ {x y} (f : Hom x y)  Image B f)
   Weak-cocartesian-fibration Subobjects
Subobject-weak-opfibration ims f x' = l where
  module im = Image B (ims (f  x' .map))

To understand this result, we remind ourselves of the universal property of an image factorisation for It is the initial subobject through which factors. That is to say, if is another subobject, and for some map then Summarised diagrammatically, the universal property of an image factorisation looks like a kite:

Now compare this with the universal property required of a weak co-cartesian lift:

By smooshing the corner together (i.e., composing and we see that this is exactly the kite-shaped universal property of

  l : Weak-cocartesian-lift Subobjects f x'
  l .y' .dom   = im.Im
  l .y' .map   = im.Im→codomain
  l .y' .monic = im.Im→codomain-is-M

  l .lifting .map = im.corestrict
  l .lifting .com = sym im.image-factors

  l .weak-cocartesian .universal {x' = y'} h .map = im.universal _ (y' .monic) (h .map) (sym (h .com))
  l .weak-cocartesian .universal h .com = idl _  sym im.universal-factors

  l .weak-cocartesian .commutes g' = prop!
  l .weak-cocartesian .unique _ _  = prop!

The aforementioned general fact says that any cartesian and weak cocartesian fibration must actually be a full opfibration.

Subobject-opfibration
  : (∀ {x y} (f : Hom x y)  Image B f)
   (pb : has-pullbacks B)
   Cocartesian-fibration Subobjects
Subobject-opfibration images pb = fibration+weak-opfibration→opfibration _
  (with-pullbacks.Subobject-fibration pb)
  (Subobject-weak-opfibration images)

Subobjects over a base🔗

We define the category of subobjects of as a fibre of the subobject fibration.

Sub : Ob  Precategory (o  ) 
Sub y = Fibre Subobjects y

module Sub {y} = Cr (Sub y)

There is an evident fully faithful functor from that forgets the property of being monic.

Sub→Slice :  y  Functor (Sub y) (Slice B y)
Sub→Slice y .Functor.F₀ m = cut (m .map)
Sub→Slice y .Functor.F₁ f = record { map = f .map ; com = sym (f .com)  idl _ }
Sub→Slice y .Functor.F-id = ext refl
Sub→Slice y .Functor.F-∘ _ _ = ext refl

Sub→Slice-is-ff
  :  y  is-fully-faithful (Sub→Slice y)
Sub→Slice-is-ff y = is-iso→is-equiv λ where
  .is-iso.from m  record { map = m ./-Hom.map ; com = idl _  sym (m ./-Hom.com) }
  .is-iso.rinv m  ext refl
  .is-iso.linv m  prop!

Composing this with the forgetful functor we obtain a projection As both forgetful functors are conservative, so is the projection, which concretely means that we can construct isomorphisms in from isomorphisms in

Sub-cod :  y  Functor (Sub y) B
Sub-cod y = Forget/ F∘ Sub→Slice y

Sub→Slice-conservative
  :  y  is-conservative (Sub→Slice y)
Sub→Slice-conservative y = is-ff→is-conservative
  {F = Sub→Slice y} (Sub→Slice-is-ff y) _

Sub-cod-conservative
  :  y  is-conservative (Sub-cod y)
Sub-cod-conservative y = F∘-is-conservative Forget/ (Sub→Slice y)
  Forget/-is-conservative
  (Sub→Slice-conservative y)

invertible→≅ₘ
  : (f : m ≤ₘ n)
   is-invertible (f .map)
   m ≅ₘ n
invertible→≅ₘ f inv = Sub.invertible→iso f (Sub-cod-conservative _ inv)

Fibrewise cartesian structure🔗

Finite products in are created by the projection to in other words, they are computed just like finite products in . We spell them out explicitly.

The greatest element (terminal object) in is given by the identity monomorphism

⊤ₘ :  {y}  Subobject y
⊤ₘ .dom   = _
⊤ₘ .map   = id
⊤ₘ .monic = id-monic

opaque
  !ₘ :  {y} {m : Subobject y}  m ≤ₘ ⊤ₘ
  !ₘ {m = m} = record { map = m .map ; com = refl }

Sub-terminal :  {y}  Terminal (Sub y)
Sub-terminal .Terminal.top = ⊤ₘ
Sub-terminal .Terminal.has⊤ m = contr !ₘ λ _  prop!

Since products in slice categories are given by pullbacks, and pullbacks preserve monomorphisms, if has pullbacks, then has products, regardless of what is. Given two subobjects we write their product as and think of it as their intersection.

Sub-products
  :  {y}
   has-pullbacks B
   has-products (Sub y)
Sub-products {y} pb a b = prod where
  it = pb (a .map) (b .map)

  prod : Product (Sub y) a b
  prod .Product.apex .dom = it .apex
  prod .Product.apex .map = a .map  it .p₁
  prod .Product.apex .monic = ∘-is-monic
    (a .monic)
    (is-monic→pullback-is-monic (b .monic) (rotate-pullback (it .has-is-pb)))

  prod .Product.π₁ .map = it .p₁
  prod .Product.π₁ .com = idl _

  prod .Product.π₂ .map = it .p₂
  prod .Product.π₂ .com = idl _  it .square

  prod .Product.has-is-product .is-product.⟨_,_⟩ q≤a q≤b .map =
    it .Pullback.universal {p₁' = q≤a .map} {p₂' = q≤b .map} (sym (q≤a .com)  q≤b .com)
  prod .Product.has-is-product .is-product.⟨_,_⟩ q≤a q≤b .com =
    idl _  sym (pullr (it .p₁∘universal)  sym (q≤a .com)  idl _)
  prod .Product.has-is-product .is-product.π₁∘⟨⟩ = prop!
  prod .Product.has-is-product .is-product.π₂∘⟨⟩ = prop!
  prod .Product.has-is-product .is-product.unique _ _ = prop!

Univalence🔗

Since identity of is given by identity of the underlying objects and identity-over of the corresponding morphisms, if is univalent, we can conclude that is, too. Since is always thin, we can summarise the situation by saying that is a partial order if is univalent.

Sub-is-category :  {y}  is-category B  is-category (Sub y)
Sub-is-category b-cat .to-path {a} {b} x =
  Sub-path
    (b-cat .to-path i)
    (Univalent.Hom-pathp-refll-iso b-cat (sym (x .Sub.from .com)  idl _))
  where
    i : a .dom  b .dom
    i = make-iso (x .Sub.to .map) (x .Sub.from .map) (ap map (Sub.invl x)) (ap map (Sub.invr x))
Sub-is-category b-cat .to-path-over p =
  Sub.≅-pathp refl _ prop!

As a consequence, the collection of subobjects of any object of a univalent category forms a set.

Subobject-is-set : is-category B   {A}  is-set (Subobject A)
Subobject-is-set b-cat {A} = Poset.Ob-is-set $
  thin→poset (Sub A)  _ _  ≤-over-is-prop) (Sub-is-category b-cat)