module Cat.Diagram.Pullback.Properties where

Properties of pullbacks🔗

This module chronicles some general properties of pullbacks.

Pasting law🔗

The pasting law for pullbacks says that, if in the commutative diagram below the the right square is a pullback, then the left square is universal if, and only if, the outer rectangle is, too. Note the emphasis on the word commutative: if we don’t know that both squares (and the outer rectangle) all commute, the pasting law does not go through.

  module _ {a b c d e f : Ob}
           {a→d : Hom a d} {a→b : Hom a b} {b→c : Hom b c}
           {d→e : Hom d e} {b→e : Hom b e} {e→f : Hom e f}
           {c→f : Hom c f}
           (right-pullback : is-pullback C b→c c→f b→e e→f)
    where
  
    private module right = is-pullback right-pullback

Let’s start with proving that, if the outer rectangle is a pullback, then so is the left square. Assume, then, that we have some other object which fits into a cone, like in the diagram below. I’ve coloured the two arrows we assume commutative.

    pasting-outer→left-is-pullback
      : is-pullback C (b→c  a→b) c→f a→d (e→f  d→e)
       (square : b→e  a→b  d→e  a→d)
       is-pullback C a→b b→e a→d d→e
    pasting-outer→left-is-pullback outer square = pb where
      module outer = is-pullback outer

To appeal to the universal property of the outer pullback, we must somehow extend our red cone over to one over Can we do this? Yes! By assumption, the square on the right commutes, which lets us apply commutativity of the red diagram (the assumption in the code). Check out the calculation below:

      abstract
        path :  {P} {P→b : Hom P b} {P→d : Hom P d} (p : b→e  P→b  d→e  P→d)
              c→f  b→c  P→b  (e→f  d→e)  P→d
        path {_} {P→b} {P→d} p =
          c→f  b→c  P→b   ≡⟨ extendl right.square 
          e→f  b→e  P→b   ≡⟨ ap (e→f ∘_) p 
          e→f  d→e  P→d   ≡⟨ cat! C 
          (e→f  d→e)  P→d 
  
      pb : is-pullback C _ _ _ _
      pb .is-pullback.square =
        b→e  a→b ≡⟨ square 
        d→e  a→d 

We thus have an induced map which, since is a pullback, makes everything in sight commute, and does so uniquely.

      pb .universal {p₁' = P→b} {p₂' = P→d} p =
        outer.universal {p₁' = b→c  P→b} {p₂' = P→d} (path p)
  
      pb .p₁∘universal {p₁' = P→b} {p₂' = P→d} {p = p} =
        right.unique₂ {p = pulll right.square  pullr p}
          (assoc _ _ _  outer.p₁∘universal)
          (pulll square  pullr outer.p₂∘universal)
          refl p
  
      pb .p₂∘universal {p₁' = P→b} {p₂' = P→d} {p = p} = outer.p₂∘universal
  
      pb .unique {p = p} q r =
        outer.unique (sym (ap (_ ∘_) (sym q)  assoc _ _ _)) r

For the converse, suppose that both small squares are a pullback, and we have a cone over By the universal property of the right pullback, we can find a map forming the left leg of a cone over By the universal property of the left square, we then have a map as we wanted.

    pasting-left→outer-is-pullback
      : is-pullback C a→b b→e a→d d→e
       (square : c→f  b→c  a→b  (e→f  d→e)  a→d)
       is-pullback C (b→c  a→b) c→f a→d (e→f  d→e)
    pasting-left→outer-is-pullback left square = pb where
      module left = is-pullback left
  
      pb : is-pullback C (b→c  a→b) c→f a→d (e→f  d→e)
      pb .is-pullback.square =
        c→f  b→c  a→b   ≡⟨ square 
        (e→f  d→e)  a→d 
      pb .universal {p₁' = P→c} {p₂' = P→d} x =
        left.universal {p₁' = right.universal (x  sym (assoc _ _ _))} {p₂' = P→d}
          right.p₂∘universal
      pb .p₁∘universal = pullr left.p₁∘universal  right.p₁∘universal
      pb .p₂∘universal = left.p₂∘universal
      pb .unique {p₁' = P→c} {P→d} {p = p} {lim'} q r =
        left.unique (right.unique (assoc _ _ _  q) s) r
        where
          s : b→e  a→b  lim'  d→e  P→d
          s =
            b→e  a→b  lim'   ≡⟨ pulll left.square 
            (d→e  a→d)  lim' ≡⟨ pullr r 
            d→e  P→d          

Monomorphisms🔗

Being a monomorphism is a “limit property”. Specifically, is a monomorphism iff. the square below is a pullback.

  module _ {a b} {f : Hom a b} where
    is-monic→is-pullback : is-monic f  is-pullback C id f id f
    is-monic→is-pullback mono .square = refl
    is-monic→is-pullback mono .universal {p₁' = p₁'} p = p₁'
    is-monic→is-pullback mono .p₁∘universal = idl _
    is-monic→is-pullback mono .p₂∘universal {p = p} = idl _  mono _ _ p
    is-monic→is-pullback mono .unique p q = introl refl  p
  
    is-pullback→is-monic : is-pullback C id f id f  is-monic f
    is-pullback→is-monic pb f g p = sym (pb .p₁∘universal {p = p})  pb .p₂∘universal

Pullbacks additionally preserve monomorphisms, as shown below:

  is-monic→pullback-is-monic
    :  {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y}
     is-monic f
     is-pullback C p1 f p2 g
     is-monic p2
  is-monic→pullback-is-monic {f = f} {g} {p1 = p1} {p2} mono pb h j p = eq
    where
      module pb = is-pullback pb
      q : f  p1  h  f  p1  j
      q =
        f  p1  h ≡⟨ extendl pb.square 
        g  p2  h ≡⟨ ap (g ∘_) p 
        g  p2  j ≡˘⟨ extendl pb.square ≡˘
        f  p1  j 
  
      r : p1  h  p1  j
      r = mono _ _ q
  
      eq : h  j
      eq = pb.unique₂ {p = extendl pb.square} r p refl refl
  rotate-pullback
    :  {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y}
     is-pullback C p1 f p2 g
     is-pullback C p2 g p1 f
  rotate-pullback pb .square = sym (pb .square)
  rotate-pullback pb .universal p = pb .universal (sym p)
  rotate-pullback pb .p₁∘universal = pb .p₂∘universal
  rotate-pullback pb .p₂∘universal = pb .p₁∘universal
  rotate-pullback pb .unique p q = pb .unique q p
  
  is-pullback-iso
    :  {p p' x y z} {f : Hom x z} {g : Hom y z} {p1 : Hom p x} {p2 : Hom p y}
     (i : p  p')
     is-pullback C p1 f p2 g
     is-pullback C (p1  _≅_.from i) f (p2  _≅_.from i) g
  is-pullback-iso {f = f} {g} {p1} {p2} i pb = pb' where
    module i = _≅_ i
    pb' : is-pullback C _ _ _ _
    pb' .square = extendl (pb .square)
    pb' .universal p = i.to  pb .universal p
    pb' .p₁∘universal = cancel-inner i.invr  pb .p₁∘universal
    pb' .p₂∘universal = cancel-inner i.invr  pb .p₂∘universal
    pb' .unique p q = invertible→monic (iso→invertible (i Iso⁻¹)) _ _ $ sym $
      cancell i.invr  sym (pb .unique (assoc _ _ _  p) (assoc _ _ _  q))
  
  pullback-unique
    :  {p p' x y z} {f : Hom x z} {g : Hom y z} {p1 : Hom p x} {p2 : Hom p y}
        {p1' : Hom p' x} {p2' : Hom p' y}
     is-pullback C p1 f p2 g
     is-pullback C p1' f p2' g
     p  p'
  pullback-unique {f = f} {g} {p1} {p2} {p1'} {p2'} pb pb'
    = make-iso pb→pb' pb'→pb il ir
    where
      pb→pb' = pb' .universal (pb .square)
      pb'→pb = pb .universal (pb' .square)
      il = unique₂ pb' {p = pb' .square}
        (pulll (pb' .p₁∘universal)  pb .p₁∘universal)
        (pulll (pb' .p₂∘universal)  pb .p₂∘universal)
        (idr _) (idr _)
      ir = unique₂ pb {p = pb .square}
        (pulll (pb .p₁∘universal)  pb' .p₁∘universal)
        (pulll (pb .p₂∘universal)  pb' .p₂∘universal)
        (idr _) (idr _)
  
  Pullback-unique
    :  {x y z} {f : Hom x z} {g : Hom y z}
     is-category C
     is-prop (Pullback C f g)
  Pullback-unique {x = X} {Y} {Z} {f} {g} c-cat x y = p where
    open Pullback
    module x = Pullback x
    module y = Pullback y
    apices = c-cat .to-path (pullback-unique (x .has-is-pb) (y .has-is-pb))
  
    abstract
      p1s : PathP  i  Hom (apices i) X) x.p₁ y.p₁
      p1s = Univalent.Hom-pathp-refll-iso c-cat (x.p₁∘universal)
  
      p2s : PathP  i  Hom (apices i) Y) x.p₂ y.p₂
      p2s = Univalent.Hom-pathp-refll-iso c-cat (x.p₂∘universal)
  
      lims
        :  {P'} {p1' : Hom P' X} {p2' : Hom P' Y} (p : f  p1'  g  p2')
         PathP  i  Hom P' (apices i)) (x.universal p) (y.universal p)
      lims p = Univalent.Hom-pathp-reflr-iso c-cat $
        y.unique (pulll y.p₁∘universal  x.p₁∘universal)
                (pulll y.p₂∘universal  x.p₂∘universal)
  
    p : x  y
    p i .apex = apices i
    p i .p₁ = p1s i
    p i .p₂ = p2s i
    p i .has-is-pb .square =
      is-prop→pathp  i  Hom-set (apices i) Z (f  p1s i) (g  p2s i))
        x.square y.square i
    p i .has-is-pb .universal p = lims p i
    p i .has-is-pb .p₁∘universal {p = p} =
      is-prop→pathp  i  Hom-set _ X (p1s i  lims p i) _)
        x.p₁∘universal y.p₁∘universal i
    p i .has-is-pb .p₂∘universal {p = p} =
      is-prop→pathp  i  Hom-set _ _ (p2s i  lims p i) _)
        x.p₂∘universal y.p₂∘universal i
    p i .has-is-pb .unique {P' = P'} {p₁' = p₁'} {p₂' = p₂'} {p = p'} {lim' = lim'} =
      is-prop→pathp
         i    Π-is-hlevel {A = Hom P' (apices i)} 1
         λ lim  Π-is-hlevel {A = p1s i  lim  p₁'} 1
         λ p    Π-is-hlevel {A = p2s i  lim  p₂'} 1
         λ q    Hom-set P' (apices i) lim (lims p' i))
         lim  x.unique {lim' = lim})
         lim  y.unique {lim' = lim})
        i lim'
  
  canonically-stable
    :  {ℓ'} (P :  {a b}  Hom a b  Type ℓ')
     is-category C
     (pb :  {a b c} (f : Hom a c) (g : Hom b c)  Pullback C f g)
     (  {A B X} (f : Hom A B) (g : Hom X B)
       P f  P (pb g f .Pullback.p₁) )
     is-pullback-stable C P
  canonically-stable P C-cat pbs stab f g Pf pb =
    transport  i  P (Pullback-unique C-cat (pbs g f) pb' i .Pullback.p₁))
      (stab f g Pf)
    where
      pb' : Pullback C _ _
      pb' = record { has-is-pb = pb }