module Cat.Diagram.Pullback.Properties where
module _ {o ℓ} {C : Precategory o ℓ} where open Cat.Reasoning C open is-pullback private variable A B P : Ob f g h : Hom A B
Properties of pullbacks🔗
This module chronicles some general properties of pullbacks.
Identity🔗
Degenerate squares where two opposite sides are identities are pullbacks.
id-is-pullback : ∀ {a b : Ob} {f : Hom a b} → is-pullback C id f f id id-is-pullback .square = id-comm id-is-pullback .universal {p₁' = p₁'} _ = p₁' id-is-pullback .p₁∘universal = idl _ id-is-pullback .p₂∘universal {p = p} = p ∙ idl _ id-is-pullback .unique q r = sym (idl _) ∙ q
Pasting law🔗
The pasting law for pullbacks says that, if in the commutative diagram below the the right square is a pullback, then the left square is universal if, and only if, the outer rectangle is, too. Note the emphasis on the word commutative: if we don’t know that both squares (and the outer rectangle) all commute, the pasting law does not go through.
module _ {a b c d e f : Ob} {a→d : Hom a d} {a→b : Hom a b} {b→c : Hom b c} {d→e : Hom d e} {b→e : Hom b e} {e→f : Hom e f} {c→f : Hom c f} (right-pullback : is-pullback C b→c c→f b→e e→f) where private module right = is-pullback right-pullback
Let’s start with proving that, if the outer rectangle is a pullback, then so is the left square. Assume, then, that we have some other object which fits into a cone, like in the diagram below. I’ve coloured the two arrows we assume commutative.
pasting-outer→left-is-pullback : is-pullback C (b→c ∘ a→b) c→f a→d (e→f ∘ d→e) → (square : b→e ∘ a→b ≡ d→e ∘ a→d) → is-pullback C a→b b→e a→d d→e pasting-outer→left-is-pullback outer square = pb where module outer = is-pullback outer
To appeal to the universal property of the outer pullback, we must somehow extend our red cone over to one over Can we do this? Yes! By assumption, the square on the right commutes, which lets us apply commutativity of the red diagram (the assumption in the code). Check out the calculation below:
abstract path : ∀ {P} {P→b : Hom P b} {P→d : Hom P d} (p : b→e ∘ P→b ≡ d→e ∘ P→d) → c→f ∘ b→c ∘ P→b ≡ (e→f ∘ d→e) ∘ P→d path {_} {P→b} {P→d} p = c→f ∘ b→c ∘ P→b ≡⟨ extendl right.square ⟩≡ e→f ∘ b→e ∘ P→b ≡⟨ ap (e→f ∘_) p ⟩≡ e→f ∘ d→e ∘ P→d ≡⟨ cat! C ⟩≡ (e→f ∘ d→e) ∘ P→d ∎ pb : is-pullback C _ _ _ _ pb .is-pullback.square = b→e ∘ a→b ≡⟨ square ⟩≡ d→e ∘ a→d ∎
We thus have an induced map which, since is a pullback, makes everything in sight commute, and does so uniquely.
pb .universal {p₁' = P→b} {p₂' = P→d} p = outer.universal {p₁' = b→c ∘ P→b} {p₂' = P→d} (path p) pb .p₁∘universal {p₁' = P→b} {p₂' = P→d} {p = p} = right.unique₂ {p = pulll right.square ∙ pullr p} (assoc _ _ _ ∙ outer.p₁∘universal) (pulll square ∙ pullr outer.p₂∘universal) refl p pb .p₂∘universal {p₁' = P→b} {p₂' = P→d} {p = p} = outer.p₂∘universal pb .unique {p = p} q r = outer.unique (sym (ap (_ ∘_) (sym q) ∙ assoc _ _ _)) r
For the converse, suppose that both small squares are a pullback, and we have a cone over By the universal property of the right pullback, we can find a map forming the left leg of a cone over By the universal property of the left square, we then have a map as we wanted.
pasting-left→outer-is-pullback : is-pullback C a→b b→e a→d d→e → (square : c→f ∘ b→c ∘ a→b ≡ (e→f ∘ d→e) ∘ a→d) → is-pullback C (b→c ∘ a→b) c→f a→d (e→f ∘ d→e) pasting-left→outer-is-pullback left square = pb where module left = is-pullback left pb : is-pullback C (b→c ∘ a→b) c→f a→d (e→f ∘ d→e) pb .is-pullback.square = c→f ∘ b→c ∘ a→b ≡⟨ square ⟩≡ (e→f ∘ d→e) ∘ a→d ∎ pb .universal {p₁' = P→c} {p₂' = P→d} x = left.universal {p₁' = right.universal (x ∙ sym (assoc _ _ _))} {p₂' = P→d} right.p₂∘universal pb .p₁∘universal = pullr left.p₁∘universal ∙ right.p₁∘universal pb .p₂∘universal = left.p₂∘universal pb .unique {p₁' = P→c} {P→d} {p = p} {lim'} q r = left.unique (right.unique (assoc _ _ _ ∙ q) s) r where s : b→e ∘ a→b ∘ lim' ≡ d→e ∘ P→d s = b→e ∘ a→b ∘ lim' ≡⟨ pulll left.square ⟩≡ (d→e ∘ a→d) ∘ lim' ≡⟨ pullr r ⟩≡ d→e ∘ P→d ∎
Monomorphisms🔗
Being a monomorphism is a “limit property”. Specifically, is a monomorphism iff. the square below is a pullback.
module _ {a b} {f : Hom a b} where is-monic→is-pullback : is-monic f → is-pullback C id f id f is-monic→is-pullback mono .square = refl is-monic→is-pullback mono .universal {p₁' = p₁'} p = p₁' is-monic→is-pullback mono .p₁∘universal = idl _ is-monic→is-pullback mono .p₂∘universal {p = p} = idl _ ∙ mono _ _ p is-monic→is-pullback mono .unique p q = introl refl ∙ p is-pullback→is-monic : is-pullback C id f id f → is-monic f is-pullback→is-monic pb f g p = sym (pb .p₁∘universal {p = p}) ∙ pb .p₂∘universal
Pullbacks additionally preserve monomorphisms, as shown below:
is-monic→pullback-is-monic : ∀ {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y} → is-monic f → is-pullback C p1 f p2 g → is-monic p2 is-monic→pullback-is-monic {f = f} {g} {p1 = p1} {p2} mono pb h j p = eq where module pb = is-pullback pb q : f ∘ p1 ∘ h ≡ f ∘ p1 ∘ j q = f ∘ p1 ∘ h ≡⟨ extendl pb.square ⟩≡ g ∘ p2 ∘ h ≡⟨ ap (g ∘_) p ⟩≡ g ∘ p2 ∘ j ≡˘⟨ extendl pb.square ⟩≡˘ f ∘ p1 ∘ j ∎ r : p1 ∘ h ≡ p1 ∘ j r = mono _ _ q eq : h ≡ j eq = pb.unique₂ {p = extendl pb.square} r p refl refl
A similar result holds for isomorphisms.
is-invertible→pullback-is-invertible : ∀ {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y} → is-invertible f → is-pullback C p1 f p2 g → is-invertible p2 is-invertible→pullback-is-invertible {f = f} {g} {p1 = p1} {p2} f-inv pb = make-invertible (pb.universal {p₁' = f.inv ∘ g} {p₂' = id} (cancell f.invl ∙ sym (idr _))) pb.p₂∘universal (pb.unique₂ {p = pulll (cancell f.invl)} (pulll pb.p₁∘universal) (cancell pb.p₂∘universal) (idr _ ∙ introl f.invr ∙ extendr pb.square) (idr _)) where module f = is-invertible f-inv module pb = is-pullback pb
rotate-pullback : ∀ {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y} → is-pullback C p1 f p2 g → is-pullback C p2 g p1 f rotate-pullback pb .square = sym (pb .square) rotate-pullback pb .universal p = pb .universal (sym p) rotate-pullback pb .p₁∘universal = pb .p₂∘universal rotate-pullback pb .p₂∘universal = pb .p₁∘universal rotate-pullback pb .unique p q = pb .unique q p pullback-unique : ∀ {p p' x y z} {f : Hom x z} {g : Hom y z} {p1 : Hom p x} {p2 : Hom p y} {p1' : Hom p' x} {p2' : Hom p' y} → (pb : is-pullback C p1 f p2 g) → (sq : f ∘ p1' ≡ g ∘ p2') → is-invertible (pb .universal sq) ≃ is-pullback C p1' f p2' g pullback-unique {f = f} {g} {p1} {p2} {p1'} {p2'} pb sq = prop-ext! inv→pb pb→inv where module _ (inv : is-invertible (pb .universal sq)) where module i = is-invertible inv open is-pullback inv→pb : is-pullback C p1' f p2' g inv→pb .square = sq inv→pb .universal p = i.inv ∘ pb .universal p inv→pb .p₁∘universal = pulll (rswizzle (sym (pb .p₁∘universal)) i.invl) ∙ pb .p₁∘universal inv→pb .p₂∘universal = pulll (rswizzle (sym (pb .p₂∘universal)) i.invl) ∙ pb .p₂∘universal inv→pb .unique p q = sym (lswizzle (sym (pb .unique (pulll (pb .p₁∘universal) ∙ p) (pulll (pb .p₂∘universal) ∙ q))) i.invr) pb→inv : is-pullback C p1' f p2' g → is-invertible (pb .universal sq) pb→inv pb' = make-invertible (pb' .universal (pb .square)) (unique₂ pb {p = pb .square} (pulll (pb .p₁∘universal) ∙ pb' .p₁∘universal) (pulll (pb .p₂∘universal) ∙ pb' .p₂∘universal) (idr _) (idr _)) (unique₂ pb' {p = pb' .square} (pulll (pb' .p₁∘universal) ∙ pb .p₁∘universal) (pulll (pb' .p₂∘universal) ∙ pb .p₂∘universal) (idr _) (idr _)) is-pullback-iso : ∀ {p p' x y z} {f : Hom x z} {g : Hom y z} {p1 : Hom p x} {p2 : Hom p y} → (i : p ≅ p') → is-pullback C p1 f p2 g → is-pullback C (p1 ∘ _≅_.from i) f (p2 ∘ _≅_.from i) g is-pullback-iso i pb = Equiv.to (pullback-unique pb (extendl (pb .square))) (subst is-invertible (pb .unique refl refl) (iso→invertible (i Iso⁻¹))) Pullback-unique : ∀ {x y z} {f : Hom x z} {g : Hom y z} → is-category C → is-prop (Pullback C f g) Pullback-unique {x = X} {Y} {Z} {f} {g} c-cat x y = p where open Pullback module x = Pullback x module y = Pullback y apices = c-cat .to-path (invertible→iso _ (Equiv.from (pullback-unique (y .has-is-pb) (x .square)) (x .has-is-pb))) abstract p1s : PathP (λ i → Hom (apices i) X) x.p₁ y.p₁ p1s = Univalent.Hom-pathp-refll-iso c-cat (x.p₁∘universal) p2s : PathP (λ i → Hom (apices i) Y) x.p₂ y.p₂ p2s = Univalent.Hom-pathp-refll-iso c-cat (x.p₂∘universal) lims : ∀ {P'} {p1' : Hom P' X} {p2' : Hom P' Y} (p : f ∘ p1' ≡ g ∘ p2') → PathP (λ i → Hom P' (apices i)) (x.universal p) (y.universal p) lims p = Univalent.Hom-pathp-reflr-iso c-cat $ y.unique (pulll y.p₁∘universal ∙ x.p₁∘universal) (pulll y.p₂∘universal ∙ x.p₂∘universal) p : x ≡ y p i .apex = apices i p i .p₁ = p1s i p i .p₂ = p2s i p i .has-is-pb .square = is-prop→pathp (λ i → Hom-set (apices i) Z (f ∘ p1s i) (g ∘ p2s i)) x.square y.square i p i .has-is-pb .universal p = lims p i p i .has-is-pb .p₁∘universal {p = p} = is-prop→pathp (λ i → Hom-set _ X (p1s i ∘ lims p i) _) x.p₁∘universal y.p₁∘universal i p i .has-is-pb .p₂∘universal {p = p} = is-prop→pathp (λ i → Hom-set _ _ (p2s i ∘ lims p i) _) x.p₂∘universal y.p₂∘universal i p i .has-is-pb .unique {P' = P'} {p₁' = p₁'} {p₂' = p₂'} {p = p'} {lim' = lim'} = is-prop→pathp (λ i → Π-is-hlevel {A = Hom P' (apices i)} 1 λ lim → Π-is-hlevel {A = p1s i ∘ lim ≡ p₁'} 1 λ p → Π-is-hlevel {A = p2s i ∘ lim ≡ p₂'} 1 λ q → Hom-set P' (apices i) lim (lims p' i)) (λ lim → x.unique {lim' = lim}) (λ lim → y.unique {lim' = lim}) i lim' canonically-stable : ∀ {ℓ'} (P : ∀ {a b} → Hom a b → Type ℓ') → is-category C → (pb : ∀ {a b c} (f : Hom a c) (g : Hom b c) → Pullback C f g) → ( ∀ {A B X} (f : Hom A B) (g : Hom X B) → P f → P (pb g f .Pullback.p₁) ) → is-pullback-stable C P canonically-stable P C-cat pbs stab f g Pf pb = transport (λ i → P (Pullback-unique C-cat (pbs g f) pb' i .Pullback.p₁)) (stab f g Pf) where pb' : Pullback C _ _ pb' = record { has-is-pb = pb }