module Cat.Displayed.Cartesian.Indexing
  {o  o′ ℓ′} {B : Precategory o }
  (E : Displayed B o′ ℓ′)
  (cartesian : Cartesian-fibration E)
  where

Reindexing for Cartesian fibrations🔗

A cartesian fibration can be thought of as a displayed category E\mathcal{E} whose fibre categories E(b)\mathcal{E}^*(b) depend (pseudo)functorially on the object b:Bb : \mathcal{B} from the base category. A canonical example is the canonical self-indexing: If C\mathcal{C} is a category with pullbacks, then each bfa:Cb \xrightarrow{f} a : \mathcal{C} gives rise to a functor C/aC/b\mathcal{C}/a \to \mathcal{C}/b, the change of base along ff.

module _ {𝒶 𝒷} (f : Hom 𝒶 𝒷) where
  base-change : Functor (Fibre E 𝒷) (Fibre E 𝒶)
  base-change .F₀ ob = has-lift f ob .x′
  base-change .F₁ {x} {y} vert = rebase f vert

Moreover, this assignment is itself functorial in ff: Along the identity morphism, it’s the same thing as not changing bases at all.

module _ {𝒶} where
  private
    module FC = Cat.Reasoning (Cat[ Fibre E 𝒶 , Fibre E 𝒶 ])
    module Fa = Cat.Reasoning (Fibre E 𝒶)

  base-change-id : base-change id FC.≅ Id
I’ll warn you in advance that this proof is not for the faint of heart.
  base-change-id = to-natural-iso mi where
    open make-natural-iso
    mi : make-natural-iso (base-change id) Id
    mi .eta x = has-lift.lifting id x
    mi .inv x = has-lift.universalv id x id′
    mi .eta∘inv x = cancel _ _ (has-lift.commutesv _ _ _)
    mi .inv∘eta x = sym $
      has-lift.uniquev₂ id x Fa.id _ (cast[] $ idr′ _) $
      to-pathp (smashr _ _  cancel _ _ (cancell[] _ (has-lift.commutesv _ _ _)))
    mi .natural x y f = ap hom[] $ sym $
      has-lift.commutes _ _ _ _ ·· hom[]-∙ _ _ ·· liberate _

And similarly, composing changes of base is the same thing as changing base along a composite.

module _ {𝒶} {𝒷} {𝒸} (f : Hom 𝒷 𝒸) (g : Hom 𝒶 𝒷) where
  private
    module FC = Cat.Reasoning (Cat[ Fibre E 𝒸 , Fibre E 𝒶 ])
    module Fa = Cat.Reasoning (Fibre E 𝒶)

  base-change-comp : base-change (f  g) FC.≅ (base-change g F∘ base-change f)
This proof is a truly nightmarish application of universal properties and I recommend that nobody look at it, ever.

.

  base-change-comp = to-natural-iso mi where
    open make-natural-iso
    mi : make-natural-iso (base-change (f  g)) (base-change g F∘ base-change f)
    mi .eta x =
      has-lift.universalv g _ $ has-lift.universal f x g (has-lift.lifting (f  g) x)
    mi .inv x =
      has-lift.universalv (f  g) x (has-lift.lifting f _ ∘′ has-lift.lifting g _)
    mi .eta∘inv x =
      has-lift.uniquev₂ g _ _ _
        (to-pathp $
          smashr _ _
          ·· revive₁ (pulll[] _ (has-lift.commutesv g _ _))
          ·· has-lift.uniquep₂ f _ refl refl refl _ _
            (pulll-indexr _ (has-lift.commutes f _ _ _)
             cancel _ _ (has-lift.commutesv (f  g) _ _))
            refl)
        (idr′ _)
    mi .inv∘eta x =
      has-lift.uniquev₂ (f  g) _ _ _
        (to-pathp $
          smashr _ _
          ·· revive₁ (pulll[] _ (has-lift.commutesv (f  g) _ _))
          ·· revive₁ (pullr[] _ (has-lift.commutesv g _ _))
           cancel _ _ (has-lift.commutes f _ _ _))
        (idr′ _)
    mi .natural x y f′ =
      ap hom[] $ cartesian→weak-monic E (has-lift.cartesian g _) _ _ $
        from-pathp⁻ (pulll[] _ (has-lift.commutes g _ _ _))
        ·· smashl _ _ ·· smashl _ _
        ·· revive₁ (pullr[] _ (has-lift.commutesv g _ _ ))
        ·· (cartesian→weak-monic E (has-lift.cartesian f _) _ _ $
          whisker-r _
          ·· revive₁ (pulll[] _ (has-lift.commutesv f _ _))
          ·· smashl _ _
          ·· revive₁ (pullr[] _ (has-lift.commutes f _ _ _))
          ·· duplicate _ (ap (f ∘_) (intror (idl id))) _
          ·· revive₁ (symP (has-lift.commutesv (f  g) _ _))
          ·· revive₁ (pushl[] _ (symP $ has-lift.commutes f _ _ _))
          ·· unwhisker-r _ (ap (g ∘_) (sym $ idl id))
          ·· ap (has-lift.lifting f _ ∘′_) (expandl _ _  reindex _ _))
         cancel (sym $ assoc _ _ _) _ (pushl[] _ (symP $ has-lift.commutes g _ _ _))