module Cat.Displayed.Reasoning {o' β' o'' β''} {B : Precategory o' β'} (E : Displayed B o'' β'') where
Reasoning in displayed categoriesπ
private module E = Displayed E module B = Cat B _ = Displayed.Hom[_] -- anchor for the reference below
Contrary to the reasoning combinators
for precategories, reasoning in a displayed category is
much harder. The core of the problem is that the type Displayed.Hom[_]
of
displayed morphisms is dependent, so all but the most trivial
paths over it will similarly be dependent paths
. We prefer
to work instead with non-dependent paths and substitution, using the
from-pathp
and to-pathp
combinators to
adjust to the situation.
A fundamental operator is moving a morphism between displayed
depending on a path in the base category, so we provide a shorthand
syntax for that here. You can think of this as being an abbreviation for
subst
becauseβ¦ thatβs what
it is.
hom[_] : β {a b x y} {f g : B.Hom a b} β f β‘ g β E.Hom[ f ] x y β E.Hom[ g ] x y hom[ p ] f' = subst (Ξ» h β E.Hom[ h ] _ _) p f' hom[_]β» : β {a b x y} {f g : B.Hom a b} β g β‘ f β E.Hom[ f ] x y β E.Hom[ g ] x y hom[ p ]β» f' = hom[ sym p ] f'
Since equality in the base is a proposition, we can always adjust the path weβre transporting over to get something more convenient.
reindex : β {a b x y} {f g : B.Hom a b} (p q : f β‘ g) {f' : E.Hom[ f ] x y} β hom[ p ] f' β‘ hom[ q ] f' reindex p q {f'} = ap (Ξ» e β hom[ e ] f') (B.Hom-set _ _ _ _ p q) cast[] : β {a b x y} {f g : B.Hom a b} {f' : E.Hom[ f ] x y} {g' : E.Hom[ g ] x y} β {p q : f β‘ g} β f' E.β‘[ p ] g' β f' E.β‘[ q ] g' cast[] {f = f} {g = g} {f' = f'} {g' = g'} {p = p} {q = q} r = coe0β1 (Ξ» i β f' E.β‘[ B.Hom-set _ _ f g p q i ] g') r
Next come the most important lemmas: Moving substitution in and out
of composite morphisms. The whisker-r
combinator says
that substituting on the right of a composition is the same thing as
composing first, then adjusting by a path which leaves the βleftβ
composite unchanged.
hom[]-β : β {a b x y} {f g h : B.Hom a b} (p : f β‘ g) (q : g β‘ h) {f' : E.Hom[ f ] x y} β hom[ q ] (hom[ p ] f') β‘ hom[ p β q ] f' hom[]-β p q = sym (subst-β (Ξ» h β E.Hom[ h ] _ _) _ _ _) duplicate : β {a b x y} {f f' g : B.Hom a b} (p : f β‘ g) (q : f' β‘ g) (r : f β‘ f') {f' : E.Hom[ f ] x y} β hom[ p ] f' β‘ hom[ q ] (hom[ r ] f') duplicate p q r = reindex _ _ β sym (hom[]-β r q)
To understand why these whiskering lemmas have such complicated types, recall that the βdisplayed compositionβ operator has type
so if we have some path the composite will have type but the composite has type Hence the need to adjust that composite: we canβt just get rid of the transport
whisker-r : β {a b c} {f : B.Hom b c} {g gβ : B.Hom a b} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : g β‘ gβ) β f' E.β' hom[ p ] g' β‘ hom[ ap (f B.β_) p ] (f' E.β' g') whisker-r {f = f} {a' = a'} {_} {c'} {f'} {g'} p i = comp (Ξ» j β E.Hom[ f B.β p (i β¨ j) ] a' c') (β i) Ξ» where j (i = i0) β f' E.β' transport-filler (Ξ» i β E.Hom[ p i ] _ _) g' j j (i = i1) β hom[ ap (f B.β_) p ] (f' E.β' g') j (j = i0) β transport-filler (Ξ» i β E.Hom[ f B.β p i ] _ _) (f' E.β' g') i whisker-l : β {a b c} {f fβ : B.Hom b c} {g : B.Hom a b} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : f β‘ fβ) β hom[ p ] f' E.β' g' β‘ hom[ ap (B._β g) p ] (f' E.β' g') whisker-l {g = g} {a'} {_} {c'} {f' = f'} {g' = g'} p i = comp (Ξ» j β E.Hom[ p (i β¨ j) B.β g ] a' c') (β i) Ξ» where j (i = i0) β transport-filler (Ξ» i β E.Hom[ p i ] _ _) f' j E.β' g' j (i = i1) β hom[ ap (B._β g) p ] (f' E.β' g') j (j = i0) β transport-filler (Ξ» i β E.Hom[ p i B.β g ] _ _) (f' E.β' g') i
unwhisker-r : β {a b c} {f : B.Hom b c} {g gβ : B.Hom a b} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : f B.β g β‘ f B.β gβ) (q : g β‘ gβ) β hom[ p ] (f' E.β' g') β‘ f' E.β' hom[ q ] g' unwhisker-r p q = reindex _ _ β sym (whisker-r _) unwhisker-l : β {a b c} {f fβ : B.Hom b c} {g : B.Hom a b} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : f B.β g β‘ fβ B.β g) (q : f β‘ fβ) β hom[ p ] (f' E.β' g') β‘ hom[ q ] f' E.β' g' unwhisker-l p q = reindex _ _ β sym (whisker-l _)
The rest of this module is made up of grueling applications of the three lemmas above:
smashr : β {a b c} {f : B.Hom b c} {g gβ : B.Hom a b} {h : B.Hom a c} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : g β‘ gβ) (q : f B.β gβ β‘ h) β hom[ q ] (f' E.β' hom[ p ] g') β‘ hom[ ap (f B.β_) p β q ] (f' E.β' g') smashr p q = ap hom[ q ] (whisker-r p) β hom[]-β _ _ smashl : β {a b c} {f fβ : B.Hom b c} {g : B.Hom a b} {h : B.Hom a c} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : f β‘ fβ) (q : fβ B.β g β‘ h) β hom[ q ] (hom[ p ] f' E.β' g') β‘ hom[ ap (B._β g) p β q ] (f' E.β' g') smashl p q = ap hom[ q ] (whisker-l p) β hom[]-β _ _ expandl : β {a b c} {f fβ : B.Hom b c} {g : B.Hom a b} {h : B.Hom a c} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : f β‘ fβ) (q : f B.β g β‘ h) β hom[ q ] (f' E.β' g') β‘ hom[ ap (B._β g) (sym p) β q ] (hom[ p ] f' E.β' g') expandl p q = reindex q _ β (sym $ smashl _ _) expandr : β {a b c} {f : B.Hom b c} {g gβ : B.Hom a b} {h : B.Hom a c} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} β (p : g β‘ gβ) (q : f B.β g β‘ h) β hom[ q ] (f' E.β' g') β‘ hom[ ap (f B.β_) (sym p) β q ] (f' E.β' hom[ p ] g') expandr p q = reindex q _ β (sym $ smashr _ _) yank : β {a b c d} {f : B.Hom c d} {g : B.Hom b c} {h : B.Hom a b} {i : B.Hom a c} {j : B.Hom b d} {a' b' c' d'} {f' : E.Hom[ f ] c' d'} {g' : E.Hom[ g ] b' c'} {h' : E.Hom[ h ] a' b'} (p : g B.β h β‘ i) (q : f B.β g β‘ j) (r : f B.β i β‘ j B.β h) β (f' E.β' hom[ p ](g' E.β' h')) E.β‘[ r ] hom[ q ] (f' E.β' g') E.β' h' yank {f' = f'} {g' = g'} {h' = h'} p q r = to-pathp $ hom[ r ] (f' E.β' hom[ p ] (g' E.β' h')) β‘β¨ smashr p r β©β‘ hom[ ap (B._β_ _) p β r ] (f' E.β' g' E.β' h') β‘β¨ ap hom[ _ ] (sym (from-pathp Ξ» i β E.assoc' f' g' h' (~ i))) β©β‘ hom[ ap (B._β_ _) p β r ] (hom[ sym (B.assoc _ _ _) ] ((f' E.β' g') E.β' h')) β‘β¨ hom[]-β _ _ β©β‘ hom[ sym (B.assoc _ _ _) β (ap (B .Precategory._β_ _) p β r)] ((f' E.β' g') E.β' h') β‘β¨ reindex _ _ β©β‘ hom[ (ap (B._β _) q) ] ((f' E.β' g') E.β' h') β‘Λβ¨ whisker-l q β©β‘Λ hom[ q ] (f' E.β' g') E.β' h' β cancel : β {a b} {f g : B.Hom a b} (p q : f β‘ g) {a' b'} {f' : E.Hom[ f ] a' b'} {g' : E.Hom[ g ] a' b'} β PathP (Ξ» i β E.Hom[ q i ] a' b') f' g' β hom[ p ] f' β‘ g' cancel p q r = reindex p q β from-pathp r killβ : β {a b} {a' b'} {f g h : B.Hom a b} {hβ' : E.Hom[ f ] a' b'} {hβ' : E.Hom[ g ] a' b'} β (p : f β‘ g) (q : g β‘ h) β PathP (Ξ» i β E.Hom[ p i ] a' b') hβ' hβ' β hom[ p β q ] hβ' β‘ hom[ q ] hβ' killβ p q r = sym (hom[]-β _ _) β ap hom[ q ] (from-pathp r) reviveβ : β {a b} {f g h : B.Hom a b} {a' b'} {f' : E.Hom[ f ] a' b'} {g' : E.Hom[ g ] a' b'} β {p : f β‘ g} {q : f β‘ h} β f' E.β‘[ p ] g' β hom[ q ] f' β‘ hom[ sym p β q ] g' reviveβ {f' = f'} {g' = g'} {p = p} {q = q} p' = hom[ q ] f' β‘β¨ reindex _ _ β©β‘ hom[ p β sym p β q ] f' β‘β¨ killβ p (sym p β q) p' β©β‘ hom[ sym p β q ] g' β -- Idea: p is equal to some composite p' β q, but it's misassociated or -- something. We combine the reindexing to fix the association and -- killing the first parameter to "weave" here. weave : β {a b} {a' b'} {f g h : B.Hom a b} {hβ' : E.Hom[ f ] a' b'} {hβ' : E.Hom[ g ] a' b'} β (p : f β‘ h) (p' : f β‘ g) (q : g β‘ h) β PathP (Ξ» i β E.Hom[ p' i ] a' b') hβ' hβ' β hom[ p ] hβ' β‘ hom[ q ] hβ' weave p p' q s = reindex p (p' β q) β killβ p' q s split : β {a b c} {f fβ : B.Hom b c} {g gβ : B.Hom a b} {a' b' c'} {f' : E.Hom[ f ] b' c'} {g' : E.Hom[ g ] a' b'} (p : f β‘ fβ) (q : g β‘ gβ) β hom[ apβ B._β_ p q ] (f' E.β' g') β‘ hom[ p ] f' E.β' hom[ q ] g' split p q = reindex _ (apβ B._β_ p refl β apβ B._β_ refl q) Β·Β· sym (hom[]-β _ _) Β·Β· ap hom[ _ ] (sym (whisker-l p)) β sym (whisker-r q) liberate : β {a b x y} {f : B.Hom a b} {f' : E.Hom[ f ] x y} (p : f β‘ f) β hom[ p ] f' β‘ f' liberate p = reindex p refl β transport-refl _ hom[]β©β¨_ : β {a b} {f f' : B.Hom a b} {a' b'} {p : f β‘ f'} {f' g' : E.Hom[ f ] a' b'} β f' β‘ g' β hom[ p ] f' β‘ hom[ p ] g' hom[]β©β¨_ = ap hom[ _ ] _β©β'β¨_ : β {a b c} {f f' : B.Hom b c} {g g' : B.Hom a b} {a' b' c'} {fβ' : E.Hom[ f ] b' c'} {fβ' : E.Hom[ f' ] b' c'} {gβ' : E.Hom[ g ] a' b'} {gβ' : E.Hom[ g' ] a' b'} {p : f β‘ f'} {q : g β‘ g'} β fβ' E.β‘[ p ] fβ' β gβ' E.β‘[ q ] gβ' β fβ' E.β' gβ' E.β‘[ apβ B._β_ p q ] fβ' E.β' gβ' (p β©β'β¨ q) i = p i E.β' q i _β©β'β¨refl : β {a b c} {f f' : B.Hom b c} {g : B.Hom a b} {a' b' c'} {fβ' : E.Hom[ f ] b' c'} {fβ' : E.Hom[ f' ] b' c'} {g' : E.Hom[ g ] a' b'} {p : f β‘ f'} β fβ' E.β‘[ p ] fβ' β fβ' E.β' g' E.β‘[ p B.β©ββ¨refl ] fβ' E.β' g' _β©β'β¨refl {g' = g'} p = apd (Ξ» _ β E._β' g') p reflβ©β'β¨_ : β {a b c} {f : B.Hom b c} {g g' : B.Hom a b} {a' b' c'} {f' : E.Hom[ f ] b' c'} {gβ' : E.Hom[ g ] a' b'} {gβ' : E.Hom[ g' ] a' b'} {q : g β‘ g'} β gβ' E.β‘[ q ] gβ' β f' E.β' gβ' E.β‘[ B.reflβ©ββ¨ q ] f' E.β' gβ' reflβ©β'β¨_ {f' = f'} p = apd (Ξ» _ β f' E.β'_) p splitβ©β¨_ : β {a b c} {f f' : B.Hom b c} {g g' : B.Hom a b} {a' b' c'} {fβ' : E.Hom[ f ] b' c'} {fβ' : E.Hom[ f' ] b' c'} {gβ' : E.Hom[ g ] a' b'} {gβ' : E.Hom[ g' ] a' b'} {p : f β‘ f'} {q : g β‘ g'} β hom[ p ] fβ' E.β' hom[ q ] gβ' β‘ fβ' E.β' gβ' β hom[ apβ B._β_ p q ] (fβ' E.β' gβ') β‘ fβ' E.β' gβ' splitβ©β¨ p = split _ _ β p infixr 5 _β©β'β¨_ reflβ©β'β¨_ _β©β'β¨refl infixl 4 splitβ©β¨_ hom[]β©β¨_ hom[] : β {a b x y} {f g : B.Hom a b} {p : f β‘ g} β E.Hom[ f ] x y β E.Hom[ g ] x y hom[] {p = p} f' = hom[ p ] f' pulll-indexr : β {a b c d} {f : B.Hom c d} {g : B.Hom b c} {h : B.Hom a b} {ac : B.Hom a c} {a' : E.Ob[ a ]} {b' : E.Ob[ b ]} {c' : E.Ob[ c ]} {d' : E.Ob[ d ]} {f' : E.Hom[ f ] c' d'} {g' : E.Hom[ g ] b' c'} {h' : E.Hom[ h ] a' b'} {fg' : E.Hom[ f B.β g ] b' d'} β (p : g B.β h β‘ ac) β (f' E.β' g' β‘ fg') β f' E.β' hom[ p ] (g' E.β' h') β‘ hom[ B.pullr p ] (fg' E.β' h') pulll-indexr p q = whisker-r _ β sym ( reindex _ (sym (B.assoc _ _ _) β ap (_ B.β_) p) Β·Β· sym (hom[]-β _ _) Β·Β· ap hom[] ( ap hom[] (ap (E._β' _) (sym q)) β from-pathp (symP (E.assoc' _ _ _))))
Using these tools, we can define displayed versions of the usual category reasoning combinators.
open Cat B open Displayed E private variable u w x y z : Ob a b c d f g h i : Hom x y u' w' x' y' y'' z' : Ob[ x ] a' b' c' d' f' g' h' i' : Hom[ a ] x' y'
wrap : β {f g : Hom x y} {f' : Hom[ f ] x' y'} β (p : f β‘ g) β f' β‘[ p ] hom[ p ] f' wrap p = to-pathp refl wrapl : β {f h : Hom y z} {g : Hom x y} {f' : Hom[ f ] y' z'} {g' : Hom[ g ] x' y'} β (p : f β‘ h) β f' β' g' β‘[ ap (_β g) p ] hom[ p ] f' β' g' wrapl p = to-pathp (unwhisker-l (ap (_β _) p) p) unwrap : β {f g : Hom x y} {f' : Hom[ f ] x' y'} β (p : f β‘ g) β hom[ p ] f' β‘[ sym p ] f' unwrap p = to-pathpβ» refl wrapr : β {f : Hom y z} {g h : Hom x y} {f' : Hom[ f ] y' z'} {g' : Hom[ g ] x' y'} β (p : g β‘ h) β f' β' g' β‘[ ap (f β_) p ] f' β' hom[ p ] g' wrapr p = to-pathp (unwhisker-r (ap (_ β_) p) p) unwrapl : β {f h : Hom y z} {g : Hom x y} {f' : Hom[ f ] y' z'} {g' : Hom[ g ] x' y'} β (p : f β‘ h) β hom[ p ] f' β' g' β‘[ ap (_β g) (sym p) ] f' β' g' unwrapl p = to-pathpβ» (whisker-l p) unwrapr : β {f : Hom y z} {g h : Hom x y} {f' : Hom[ f ] y' z'} {g' : Hom[ g ] x' y'} β (p : g β‘ h) β f' β' hom[ p ] g' β‘[ ap (f β_) (sym p) ] f' β' g' unwrapr p = to-pathpβ» (whisker-r p)
Shiftingsπ
When working with displayed categories, we prefer to write all of our
laws using PathP
,
as this is conceptually cleaner and avoids coherence issues. However,
when performing equational reasoning, we use regular paths and hom[_]
. To resolve this
mismatch, we define the following combinators.
module _ {f' : Hom[ f ] x' y'} {g' : Hom[ g ] x' y'} (p : f β‘ g) where abstract shiftl : f' β‘[ p ] g' β hom[ p ] f' β‘ g' shiftl q i = from-pathp (Ξ» j β q (i β¨ j)) i shiftr : f' β‘[ p ] g' β f' β‘ hom[ p ]β» g' shiftr q i = from-pathp (Ξ» j β q (i β§ ~ j)) (~ i)
Path actionsπ
Due to the plethora of PathP
, we can no longer
perform ap
as
easily. This is especially true when we have a PathP
as well as a path
between two hom[_]
. These combinators
allow us to more ergonomically handle that situation.
module _ {f' : Hom[ f ] y' z'} {g' : Hom[ g ] x' y'} {p : f β g β‘ a} where abstract apl' : β {h' : Hom[ h ] y' z'} {q : h β g β‘ a} β {fβ‘h : f β‘ h} β f' β‘[ fβ‘h ] h' β hom[ p ] (f' β' g') β‘ hom[ q ] (h' β' g') apl' {h' = h'} {q = q} {fβ‘h = fβ‘h} f'β‘h' = hom[ p ] (f' β' g') β‘β¨ hom[]β©β¨ (ap (_β' g') (shiftr _ f'β‘h')) β© hom[ p ] (hom[ fβ‘h ]β» h' β' g') β‘β¨ smashl _ _ β© hom[ ap (_β g) (sym fβ‘h) β p ] (h' β' g') β‘β¨ reindex _ _ β© hom[ q ] (h' β' g') β apr' : β {h' : Hom[ h ] x' y'} {q : f β h β‘ a} β {gβ‘h : g β‘ h} β g' β‘[ gβ‘h ] h' β hom[ p ] (f' β' g') β‘ hom[ q ] (f' β' h') apr' {h' = h'} {q = q} {gβ‘h = gβ‘h} g'β‘h' = hom[ p ] (f' β' g') β‘β¨ hom[]β©β¨ ap (f' β'_) (shiftr _ g'β‘h') β© hom[ p ] (f' β' hom[ gβ‘h ]β» h') β‘β¨ smashr _ _ β© hom[ ap (f β_) (sym gβ‘h) β p ] (f' β' h') β‘β¨ reindex _ _ β© hom[ q ] (f' β' h') β
Generalized category lawsπ
In the definition of displayed categories, the identity and
associativity laws are defined over idl
, idr
, and assoc
. However, we often
run into situations where we need to apply these equations over
different equations! These combinators do just that.
module _ {f' : Hom[ f ] x' y'} where abstract idl[] : {p : id β f β‘ f} β hom[ p ] (id' β' f') β‘ f' idl[] {p = p} = reindex p (idl _) β from-pathp (idl' f') idr[] : {p : f β id β‘ f} β hom[ p ] (f' β' id') β‘ f' idr[] {p = p} = reindex p (idr _) β from-pathp (idr' f') assoc[] : β {a' : Hom[ a ] y' z'} {b' : Hom[ b ] x' y'} {c' : Hom[ c ] w' x'} {p : a β (b β c) β‘ d} {q : (a β b) β c β‘ d} β hom[ p ] (a' β' (b' β' c')) β‘ hom[ q ] ((a' β' b') β' c') assoc[] {a = a} {b = b} {c = c} {a' = a'} {b' = b'} {c' = c'} {p = p} {q = q} = hom[ p ] (a' β' b' β' c') β‘β¨ hom[]β©β¨ shiftr (assoc a b c) (assoc' a' b' c') β© hom[ p ] (hom[ assoc a b c ]β» ((a' β' b') β' c')) β‘β¨ hom[]-β _ _ β© hom[ sym (assoc a b c) β p ] ((a' β' b') β' c') β‘β¨ reindex _ q β© hom[ q ] ((a' β' b') β' c') β
Identity morphismsπ
These are the displayed counterparts to the identity morphism combinators for categories.
module _ {a' : Hom[ a ] x' x'} (p : a β‘ id) (p' : a' β‘[ p ] id') where abstract eliml' : β {f' : Hom[ f ] y' x'} β {q : a β f β‘ f} β a' β' f' β‘[ q ] f' eliml' {f = f} {f' = f'} {q = q} = to-pathp $ hom[ q ] (a' β' f') β‘β¨ apl' p' β© hom[ idl f ] (id' β' f') β‘β¨ idl[] β© f' β elimr' : β {f' : Hom[ f ] x' y'} β {q : f β a β‘ f} β f' β' a' β‘[ q ] f' elimr' {f = f} {f' = f'} {q = q} = to-pathp $ hom[ q ] (f' β' a') β‘β¨ apr' p' β© hom[ idr f ] (f' β' id') β‘β¨ idr[] β© f' β introl' : β {f' : Hom[ f ] y' x'} β {q : f β‘ a β f} β f' β‘[ q ] a' β' f' introl' {f' = f'} {q = q} i = eliml' {f' = f'} {q = sym q} (~ i) intror' : β {f' : Hom[ f ] x' y'} β {q : f β‘ f β a} β f' β‘[ q ] f' β' a' intror' {f' = f'} {q = q} i = elimr' {f' = f'} {q = sym q} (~ i)
Reassociationsπ
These are the displayed counterparts to the reassociation combinators for categories.
module _ {a' : Hom[ a ] y' z'} {b' : Hom[ b ] x' y'} {c' : Hom[ c ] x' z'} (p : a β b β‘ c) (p' : a' β' b' β‘[ p ] c') where abstract pulll' : β {f' : Hom[ f ] w' x'} {q : a β (b β f) β‘ c β f} β a' β' (b' β' f') β‘[ q ] c' β' f' pulll' {f = f} {f' = f'} {q = q} = to-pathp $ hom[ q ] (a' β' b' β' f') β‘β¨ assoc[] β© hom[ sym (assoc a b f) β q ] ((a' β' b') β' f') β‘β¨ apl' p' β© hom[ refl ] (c' β' f') β‘β¨ liberate _ β© c' β' f' β pulll[] : β {f' : Hom[ f ] w' x'} β a' β' (b' β' f') β‘[ pulll p ] c' β' f' pulll[] = pulll' pullr' : β {f' : Hom[ f ] z' w'} {q : (f β a) β b β‘ f β c} β (f' β' a') β' b' β‘[ q ] f' β' c' pullr' {f = f} {f' = f'} {q = q} = to-pathp $ hom[ q ] ((f' β' a') β' b') β‘Λβ¨ assoc[] β© hom[ assoc f a b β q ] (f' β' a' β' b') β‘β¨ apr' p' β© hom[ refl ] (f' β' c') β‘β¨ liberate _ β© f' β' c' β pullr[] : β {f' : Hom[ f ] z' w'} β (f' β' a') β' b' β‘[ pullr p ] f' β' c' pullr[] = pullr' module _ {a' : Hom[ a ] y' z'} {b' : Hom[ b ] x' y'} {c' : Hom[ c ] x' z'} (p : c β‘ a β b) (p' : c' β‘[ p ] a' β' b') where abstract pushl' : β {f' : Hom[ f ] w' x'} {q : c β f β‘ a β (b β f)} β c' β' f' β‘[ q ] a' β' (b' β' f') pushl' {f' = f'} {q = q} i = pulll' (sym p) (Ξ» j β p' (~ j)) {f' = f'} {q = sym q} (~ i) pushl[] : β {f' : Hom[ f ] w' x'} β c' β' f' β‘[ pushl p ] a' β' (b' β' f') pushl[] = pushl' pushr' : β {f' : Hom[ f ] z' w'} {q : f β c β‘ (f β a) β b} β f' β' c' β‘[ q ] (f' β' a') β' b' pushr' {f' = f'} {q = q} i = pullr' (sym p) (Ξ» j β p' (~ j)) {f' = f'} {q = sym q} (~ i) pushr[] : β {f' : Hom[ f ] z' w'} β f' β' c' β‘[ pushr p ] (f' β' a') β' b' pushr[] = pushr' module _ {f' : Hom[ f ] y' z'} {h' : Hom[ h ] x' y'} {g' : Hom[ g ] y'' z'} {i' : Hom[ i ] x' y''} (p : f β h β‘ g β i) (p' : f' β' h' β‘[ p ] g' β' i') where abstract extendl' : β {b' : Hom[ b ] w' x'} {q : f β (h β b) β‘ g β (i β b)} β f' β' (h' β' b') β‘[ q ] g' β' (i' β' b') extendl' {b = b} {b' = b'} {q = q} = to-pathp $ hom[ q ] (f' β' h' β' b') β‘β¨ assoc[] β© hom[ sym (assoc f h b) β q ] ((f' β' h') β' b') β‘β¨ apl' p' β© hom[ sym (assoc g i b) ] ((g' β' i') β' b') β‘β¨ shiftl _ (Ξ» j β (assoc' g' i' b') (~ j)) β© g' β' i' β' b' β extendr' : β {a' : Hom[ a ] z' w'} {q : (a β f) β h β‘ (a β g) β i} β (a' β' f') β' h' β‘[ q ] (a' β' g') β' i' extendr' {a = a} {a' = a'} {q = q} = to-pathp $ hom[ q ] ((a' β' f') β' h') β‘Λβ¨ assoc[] β© hom[ assoc a f h β q ] (a' β' f' β' h') β‘β¨ apr' p' β© hom[ assoc a g i ] (a' β'(g' β' i')) β‘β¨ shiftl _ (assoc' a' g' i') β© (a' β' g') β' i' β extend-inner' : β {a' : Hom[ a ] z' u'} {b' : Hom[ b ] w' x'} {q : a β f β h β b β‘ a β g β i β b} β a' β' f' β' h' β' b' β‘[ q ] a' β' g' β' i' β' b' extend-inner' {a = a} {b = b} {a' = a'} {b' = b'} {q = q} = to-pathp $ hom[ q ] (a' β' f' β' h' β' b') β‘β¨ apr' (assoc' f' h' b') β© hom[ ap (a β_) (sym (assoc f h b)) β q ] (a' β' (f' β' h') β' b') β‘β¨ apr' (Ξ» j β p' j β' b') β© hom[ ap (a β_) (sym (assoc g i b)) ] (a' β' (g' β' i') β' b') β‘β¨ shiftl _ (Ξ» j β a' β' assoc' g' i' b' (~ j)) β© a' β' g' β' i' β' b' β extendl[] : β {b' : Hom[ b ] w' x'} β f' β' (h' β' b') β‘[ extendl p ] g' β' (i' β' b') extendl[] = extendl' extendr[] : β {a' : Hom[ a ] z' w'} β (a' β' f') β' h' β‘[ extendr p ] (a' β' g') β' i' extendr[] = extendr'
Cancellationπ
These are the displayed counterparts to the cancellation combinators for categories
module _ {a' : Hom[ a ] y' x'} {b' : Hom[ b ] x' y'} (p : a β b β‘ id) (p' : a' β' b' β‘[ p ] id') where abstract cancell' : β {f' : Hom[ f ] z' x'} {q : a β b β f β‘ f} β a' β' b' β' f' β‘[ q ] f' cancell' {f = f} {f' = f'} {q = q} = to-pathp $ hom[ q ] (a' β' b' β' f') β‘β¨ assoc[] β© hom[ sym (assoc a b f) β q ] ((a' β' b') β' f') β‘β¨ shiftl _ (eliml' p p') β© f' β cancell[] : β {f' : Hom[ f ] z' x'} β a' β' b' β' f' β‘[ cancell p ] f' cancell[] = cancell' cancelr' : β {f' : Hom[ f ] x' z'} {q : (f β a) β b β‘ f} β (f' β' a') β' b' β‘[ q ] f' cancelr' {f = f} {f' = f'} {q = q} = to-pathp $ hom[ q ] ((f' β' a') β' b') β‘Λβ¨ assoc[] β© hom[ assoc f a b β q ] (f' β' a' β' b') β‘β¨ shiftl _ (elimr' p p') β© f' β cancelr[] : β {f' : Hom[ f ] x' z'} β (f' β' a') β' b' β‘[ cancelr p ] f' cancelr[] = cancelr' cancel-inner' : β {f' : Hom[ f ] x' z'} {g' : Hom[ g ] w' x'} β {q : (f β a) β (b β g) β‘ f β g} β (f' β' a') β' (b' β' g') β‘[ q ] f' β' g' cancel-inner' = cast[] $ pullr[] _ cancell[] cancel-inner[] : β {f' : Hom[ f ] x' z'} {g' : Hom[ g ] w' x'} β (f' β' a') β' (b' β' g') β‘[ cancel-inner p ] f' β' g' cancel-inner[] = cancel-inner' insertl' : β {f' : Hom[ f ] z' x'} {q : f β‘ a β b β f } β f' β‘[ q ] a' β' b' β' f' insertl' {f = f} {f' = f'} {q = q} i = cancell' {f' = f'} {q = sym q} (~ i) insertr' : β {f' : Hom[ f ] x' z'} {q : f β‘ (f β a) β b } β f' β‘[ q ] (f' β' a') β' b' insertr' {f = f} {f' = f'} {q = q} i = cancelr' {f' = f'} {q = sym q} (~ i)