module Cat.Bi.Base where
Prebicategories🔗
open _=>_ module _ where open Functor compose-assocˡ : ∀ {o ℓ ℓ'} {O : Type o} {H : O → O → Precategory ℓ ℓ'} → (C : ∀ {A B C} → Functor (H B C ×ᶜ H A B) (H A C)) → ∀ {A B C D} → Functor (H C D ×ᶜ H B C ×ᶜ H A B) (H A D) compose-assocˡ C .F₀ (F , G , H) = C .F₀ (C .F₀ (F , G) , H) compose-assocˡ C .F₁ (f , g , h) = C .F₁ (C .F₁ (f , g) , h) compose-assocˡ C .F-id = ap (C .F₁) (Σ-pathp (C .F-id) refl) ∙ C .F-id compose-assocˡ C .F-∘ f g = ap (C .F₁) (Σ-pathp (C .F-∘ _ _) refl) ∙ C .F-∘ _ _ compose-assocʳ : ∀ {o ℓ ℓ'} {O : Type o} {H : O → O → Precategory ℓ ℓ'} → (C : ∀ {A B C} → Functor (H B C ×ᶜ H A B) (H A C)) → ∀ {A B C D} → Functor (H C D ×ᶜ H B C ×ᶜ H A B) (H A D) compose-assocʳ C .F₀ (F , G , H) = C .F₀ (F , C .F₀ (G , H)) compose-assocʳ C .F₁ (f , g , h) = C .F₁ (f , C .F₁ (g , h)) compose-assocʳ C .F-id = ap (C .F₁) (Σ-pathp refl (C .F-id)) ∙ C .F-id compose-assocʳ C .F-∘ f g = ap (C .F₁) (Σ-pathp refl (C .F-∘ _ _)) ∙ C .F-∘ _ _ private variable o ℓ ℓ' o₁ ℓ₁ ℓ₁' : Level
A (pre)bicategory is the natural higher-dimensional generalisation of a (pre)category. Whereas a precategory has sets, a prebicategory has While this generalisation might seem simple, in reality, we must be very careful when setting up the resulting structure: The key observation is that precategories have no notion of equality of objects, so everything which was an equation in the definition of precategories must be replaced with (sufficiently coherent) specified isomorphisms.
The data of a prebicategory consists of a type of objects and for each a precategory We refer to the type of objects of by and call its inhabitants maps or 1-cells; In the second dimension, between each pair of maps we have a set of 2-cells (sometimes homotopies), written
The composition operation of called vertical composition, will be written As for why it’s called vertical composition, note that it reduces pasting diagrams of the form
record Prebicategory o ℓ ℓ' : Type (lsuc (o ⊔ ℓ ⊔ ℓ')) where no-eta-equality field Ob : Type o Hom : Ob → Ob → Precategory ℓ ℓ' module Hom {A} {B} = Cr (Hom A B)
Zooming out to consider the whole bicategory, we see that each object has a specified identity 1-cell as in the case for ordinary categories, but the composition operation, rather than being a function, is a functor. This, intuitively, makes sense: since we have replaced our with we should replace our maps of sets for maps of precategories, i.e., functors.
field id : ∀ {A} → ⌞ Hom A A ⌟ compose : ∀ {A B C} → Functor (Hom B C ×ᶜ Hom A B) (Hom A C) module compose {a} {b} {c} = Fr (compose {a} {b} {c})
Before moving on to the isomorphisms witnessing identity and associativity, we introduce a bunch of notation for the different classes of maps and all the composition operations. Observe that the action of the composition functor on homotopies reduces “horizontal” pasting diagrams like
whence the name horizontal composition.
_↦_ : Ob → Ob → Type ℓ A ↦ B = ⌞ Hom A B ⌟ _⇒_ : ∀ {A B} (f g : A ↦ B) → Type ℓ' _⇒_ {A} {B} f g = Hom.Hom f g -- 1-cell composition _⊗_ : ∀ {A B C} (f : B ↦ C) (g : A ↦ B) → A ↦ C f ⊗ g = compose # (f , g) -- vertical 2-cell composition _∘_ : ∀ {A B} {f g h : A ↦ B} → g ⇒ h → f ⇒ g → f ⇒ h _∘_ {A} {B} = Hom._∘_ -- horizontal 2-cell composition _◆_ : ∀ {A B C} {f₁ f₂ : B ↦ C} (β : f₁ ⇒ f₂) {g₁ g₂ : A ↦ B} (α : g₁ ⇒ g₂) → (f₁ ⊗ g₁) ⇒ (f₂ ⊗ g₂) _◆_ β α = compose .Functor.F₁ (β , α) infixr 30 _∘_ infixr 25 _⊗_ infix 35 _◀_ _▶_ -- whiskering on the right _▶_ : ∀ {A B C} (f : B ↦ C) {a b : A ↦ B} (g : a ⇒ b) → f ⊗ a ⇒ f ⊗ b _▶_ {A} {B} {C} f g = compose .Functor.F₁ (Hom.id , g) -- whiskering on the left _◀_ : ∀ {A B C} {a b : B ↦ C} (g : a ⇒ b) (f : A ↦ B) → a ⊗ f ⇒ b ⊗ f _◀_ {A} {B} {C} g f = compose .Functor.F₁ (g , Hom.id)
We now move onto the invertible 2-cells witnessing that the chosen identity map is a left- and right- unit element for the composition functor, and that composition is associative. In reality, to get a fully coherent structure, we need these invertible 2-cells to be given as natural isomorphisms, e.g. which witnesses that the functor “compose with the identity 1-cell on the left” is naturally isomorphic to the identity functor.
field unitor-l : ∀ {A B} → Cr._≅_ Cat[ Hom A B , Hom A B ] Id (Bi.Right compose id) unitor-r : ∀ {A B} → Cr._≅_ Cat[ Hom A B , Hom A B ] Id (Bi.Left compose id) associator : ∀ {A B C D} → Cr._≅_ Cat[ Hom C D ×ᶜ Hom B C ×ᶜ Hom A B , Hom A D ] (compose-assocˡ {H = Hom} compose) (compose-assocʳ {H = Hom} compose)
It’s traditional to refer to the left unitor as to the right unitor as and to the associator as so we set up those abbreviations here too:
λ← : ∀ {A B} (f : A ↦ B) → id ⊗ f ⇒ f λ← = unitor-l .Cr._≅_.from .η λ→ : ∀ {A B} (f : A ↦ B) → f ⇒ id ⊗ f λ→ = unitor-l .Cr._≅_.to .η ρ← : ∀ {A B} (f : A ↦ B) → f ⊗ id ⇒ f ρ← = unitor-r .Cr._≅_.from .η ρ→ : ∀ {A B} (f : A ↦ B) → f ⇒ f ⊗ id ρ→ = unitor-r .Cr._≅_.to .η ρ←nat : ∀ {A B} {f f' : A ↦ B} (β : f ⇒ f') → Path ((f ⊗ id) ⇒ f') (ρ← _ ∘ (β ◀ id)) (β ∘ ρ← _) ρ←nat {A} {B} {f} {f'} β = unitor-r .Cr.from .is-natural f f' β λ←nat : ∀ {A B} {f f' : A ↦ B} (β : f ⇒ f') → Path ((id ⊗ f) ⇒ f') (λ← _ ∘ (id ▶ β)) (β ∘ λ← _) λ←nat {A} {B} {f} {f'} β = unitor-l .Cr.from .is-natural f f' β ρ→nat : ∀ {A B} {f f' : A ↦ B} (β : f ⇒ f') → Path (f ⇒ f' ⊗ id) (ρ→ _ ∘ β) ((β ◀ id) ∘ ρ→ _) ρ→nat {A} {B} {f} {f'} β = unitor-r .Cr.to .is-natural f f' β λ→nat : ∀ {A B} {f f' : A ↦ B} (β : f ⇒ f') → Path (f ⇒ id ⊗ f') (λ→ _ ∘ β) ((id ▶ β) ∘ λ→ _) λ→nat {A} {B} {f} {f'} β = unitor-l .Cr.to .is-natural f f' β α→ : ∀ {A B C D} (f : C ↦ D) (g : B ↦ C) (h : A ↦ B) → (f ⊗ g) ⊗ h ⇒ f ⊗ (g ⊗ h) α→ f g h = associator .Cr._≅_.to .η (f , g , h) α← : ∀ {A B C D} (f : C ↦ D) (g : B ↦ C) (h : A ↦ B) → f ⊗ (g ⊗ h) ⇒ (f ⊗ g) ⊗ h α← f g h = associator .Cr._≅_.from .η (f , g , h) α←nat : ∀ {A B C D} {f f' : C ↦ D} {g g' : B ↦ C} {h h' : A ↦ B} → (β : f ⇒ f') (γ : g ⇒ g') (δ : h ⇒ h') → Path (f ⊗ g ⊗ h ⇒ ((f' ⊗ g') ⊗ h')) (α← _ _ _ ∘ (β ◆ (γ ◆ δ))) (((β ◆ γ) ◆ δ) ∘ α← _ _ _) α←nat {A} {B} {C} {D} {f} {f'} {g} {g'} {h} {h'} β γ δ = associator .Cr._≅_.from .is-natural (f , g , h) (f' , g' , h') (β , γ , δ) α→nat : ∀ {A B C D} {f f' : C ↦ D} {g g' : B ↦ C} {h h' : A ↦ B} → (β : f ⇒ f') (γ : g ⇒ g') (δ : h ⇒ h') → Path ((f ⊗ g) ⊗ h ⇒ (f' ⊗ g' ⊗ h')) (α→ _ _ _ ∘ ((β ◆ γ) ◆ δ)) ((β ◆ (γ ◆ δ)) ∘ α→ _ _ _) α→nat {A} {B} {C} {D} {f} {f'} {g} {g'} {h} {h'} β γ δ = associator .Cr._≅_.to .is-natural (f , g , h) (f' , g' , h') (β , γ , δ)
The final data we need are coherences relating the left and right
unitors (the triangle identity, nothing to do with
adjunctions), and one for reducing sequences of associators, the
pentagon identity. As for where the name “pentagon”
comes from, the path pentagon
witnesses commutativity
of the diagram
field triangle : ∀ {A B C} (f : B ↦ C) (g : A ↦ B) → (ρ← f ◀ g) ∘ α← f id g ≡ f ▶ λ← g pentagon : ∀ {A B C D E} (f : D ↦ E) (g : C ↦ D) (h : B ↦ C) (i : A ↦ B) → (α← f g h ◀ i) ∘ α← f (g ⊗ h) i ∘ (f ▶ α← g h i) ≡ α← (f ⊗ g) h i ∘ α← f g (h ⊗ i)
Our coherence diagrams for bicategorical data are taken from (Leinster 1998), which contains all the diagrams we have omitted. However, we do not adopt their (dated) terminology of “homomorphism” and “strict homomorphism”. In contrast with our convention for 1-categories, we refer to bicategories using bold capital letters:
module _ (B : Prebicategory o ℓ ℓ') where open Prebicategory B open Functor postaction : ∀ {a b c} (f : a ↦ b) → Functor (Hom c a) (Hom c b) postaction f .F₀ g = f ⊗ g postaction f .F₁ g = f ▶ g postaction f .F-id = compose.F-id postaction f .F-∘ g h = f ▶ (g ∘ h) ≡˘⟨ ap (_◆ g ∘ h) (Hom.idl Hom.id) ⟩≡˘ (Hom.id ∘ Hom.id) ◆ (g ∘ h) ≡⟨ compose.F-∘ _ _ ⟩≡ (f ▶ g) ∘ (f ▶ h) ∎ preaction : ∀ {a b c} (f : a ↦ b) → Functor (Hom b c) (Hom a c) preaction f .F₀ g = g ⊗ f preaction f .F₁ g = g ◀ f preaction f .F-id = compose.F-id preaction f .F-∘ g h = (g ∘ h) ◀ f ≡˘⟨ ap (g ∘ h ◆_) (Hom.idl Hom.id) ⟩≡˘ (g ∘ h) ◆ (Hom.id ∘ Hom.id) ≡⟨ compose.F-∘ _ _ ⟩≡ (g ◀ f) ∘ (h ◀ f) ∎
The bicategory of categories🔗
Just like the prototypal example of categories is the category of sets, the prototypal example of bicategory is the bicategory of categories. We observe that, without a bound of h-level on the spaces of objects (strict categories), the collection of categories of a given universe level does not form a category, but it does form a bicategory.
{-# TERMINATING #-} Cat : ∀ o ℓ → Prebicategory (lsuc o ⊔ lsuc ℓ) (o ⊔ ℓ) (o ⊔ ℓ) Cat o ℓ = pb where open Prebicategory open Functor pb : Prebicategory _ _ _ pb .Ob = Precategory o ℓ pb .Hom = Cat[_,_] pb .id = Id
The first thing we must compute is that the functor composition operator extends to a functor composition functor, which we have already done (but off-screen, since its construction is very straightforward).
pb .compose = F∘-functor
The unitors and associator are almost, but not quite, given by the identity 2-cells, since componentwise the functor composition evaporates, leaving only behind. Unfortunately, this equation is not definitional, so we can not use the identity natural isomorphism directly:
pb .unitor-r {B = B} = to-natural-iso ni where module B = Cr B ni : make-natural-iso {D = Cat[ _ , _ ]} _ _ ni .make-natural-iso.eta x = NT (λ _ → B.id) λ _ _ _ → B.id-comm-sym ni .make-natural-iso.inv x = NT (λ _ → B.id) λ _ _ _ → B.id-comm-sym ni .make-natural-iso.eta∘inv x = ext λ _ → B.idl _ ni .make-natural-iso.inv∘eta x = ext λ _ → B.idl _ ni .make-natural-iso.natural x y f = ext λ _ → B.idr _ ∙ ap (B._∘ _) (y .F-id) pb .unitor-l {B = B} = to-natural-iso ni where module B = Cr B ni : make-natural-iso {D = Cat[ _ , _ ]} _ _ ni .make-natural-iso.eta x = NT (λ _ → B.id) λ _ _ _ → B.id-comm-sym ni .make-natural-iso.inv x = NT (λ _ → B.id) λ _ _ _ → B.id-comm-sym ni .make-natural-iso.eta∘inv x = ext λ _ → B.idl _ ni .make-natural-iso.inv∘eta x = ext λ _ → B.idl _ ni .make-natural-iso.natural x y f = ext λ _ → B.idr _ ∙ B.id-comm pb .associator {A} {B} {C} {D} = to-natural-iso ni where module D = Cr D ni : make-natural-iso {D = Cat[ _ , _ ]} _ _ ni .make-natural-iso.eta x = NT (λ _ → D.id) λ _ _ _ → D.id-comm-sym ni .make-natural-iso.inv x = NT (λ _ → D.id) λ _ _ _ → D.id-comm-sym ni .make-natural-iso.eta∘inv x = ext λ _ → D.idl _ ni .make-natural-iso.inv∘eta x = ext λ _ → D.idl _ ni .make-natural-iso.natural x y f = ext λ _ → D.idr _ ·· D.pushl (y .fst .F-∘ _ _) ·· D.introl refl pb .triangle {C = C} f g = ext λ _ → Cr.idr C _ pb .pentagon {E = E} f g h i = ext λ _ → ap₂ E._∘_ (E.eliml (ap (f .F₁) (ap (g .F₁) (h .F-id)) ·· ap (f .F₁) (g .F-id) ·· f .F-id)) (E.elimr (E.eliml (f .F-id))) where module E = Cr E
Lax functors🔗
In the same way that the definition of bicategory is obtained by starting with the definition of category and replacing the by (and adding coherence data to make sure the resulting structure is well-behaved), one can start with the definition of functor and replace the function between by functors between
However, when talking about general bicategories, we are faced with a choice: We could generalise the functoriality axioms to natural isomorphisms, keeping with the fact that equations are invertible, but we could also drop this invertibility requirement, and work only with natural transformations When these are not invertible, the resulting structure is called a lax functor; When they are, we talk about pseudofunctors instead.
record Lax-functor (B : Prebicategory o ℓ ℓ') (C : Prebicategory o₁ ℓ₁ ℓ₁') : Type (o ⊔ o₁ ⊔ ℓ ⊔ ℓ₁ ⊔ ℓ' ⊔ ℓ₁') where private module B = Prebicategory B module C = Prebicategory C field P₀ : B.Ob → C.Ob P₁ : ∀ {A B} → Functor (B.Hom A B) (C.Hom (P₀ A) (P₀ B))
The resulting structure has “directed functoriality”, witnessed by
the compositor
and unitor
natural transformations,
which have components
and
compositor : ∀ {A B C} → C.compose F∘ (P₁ {B} {C} F× P₁ {A} {B}) => P₁ F∘ B.compose unitor : ∀ {A} → C.id C.⇒ P₁ .Functor.F₀ (B.id {A = A})
module P₁ {A} {B} = Functor (P₁ {A} {B}) ₀ : B.Ob → C.Ob ₀ = P₀ ₁ : ∀ {a b} → a B.↦ b → P₀ a C.↦ P₀ b ₁ = P₁.F₀ ₂ : ∀ {a b} {f g : a B.↦ b} → f B.⇒ g → ₁ f C.⇒ ₁ g ₂ = P₁.F₁ γ→ : ∀ {a b c} (f : b B.↦ c) (g : a B.↦ b) → ₁ f C.⊗ ₁ g C.⇒ ₁ (f B.⊗ g) γ→ f g = compositor .η (f , g)
Additionally, we require the following three equations to hold,
relating the compositor transformation to the associators, and the three
unitors between themselves. We sketch the diagram which hexagon
witnesses commutativity
for, but leave the right-unit
and left-unit
diagrams undrawn
(they’re boring commutative squares).
field hexagon : ∀ {a b c d} (f : c B.↦ d) (g : b B.↦ c) (h : a B.↦ b) → ₂ (B.α→ f g h) C.∘ γ→ (f B.⊗ g) h C.∘ (γ→ f g C.◀ ₁ h) ≡ γ→ f (g B.⊗ h) C.∘ (₁ f C.▶ γ→ g h) C.∘ C.α→ (₁ f) (₁ g) (₁ h) right-unit : ∀ {a b} (f : a B.↦ b) → ₂ (B.ρ← f) C.∘ γ→ f B.id C.∘ (₁ f C.▶ unitor) ≡ C.ρ← (₁ f) left-unit : ∀ {a b} (f : a B.↦ b) → ₂ (B.λ← f) C.∘ γ→ B.id f C.∘ (unitor C.◀ ₁ f) ≡ C.λ← (₁ f)
Pseudofunctors🔗
As mentioned above, a lax functor with invertible unitors and
compositor is called a pseudofunctor. Every
pseudofunctor has an underlying lax
functor. Since invertibility is a property of 2-cells (rather
than structure on 2-cells), “being pseudo” is a property of lax
functors, not additional structure on lax functors.
record Pseudofunctor (B : Prebicategory o ℓ ℓ') (C : Prebicategory o₁ ℓ₁ ℓ₁') : Type (o ⊔ o₁ ⊔ ℓ ⊔ ℓ₁ ⊔ ℓ' ⊔ ℓ₁') where private module B = Prebicategory B module C = Prebicategory C field lax : Lax-functor B C open Lax-functor lax public field unitor-inv : ∀ {a} → C.Hom.is-invertible (unitor {a}) compositor-inv : ∀ {a b c} (f : b B.↦ c) (g : a B.↦ b) → C.Hom.is-invertible (γ→ f g) γ← : ∀ {a b c} (f : b B.↦ c) (g : a B.↦ b) → ₁ (f B.⊗ g) C.⇒ ₁ f C.⊗ ₁ g γ← f g = compositor-inv f g .Cr.is-invertible.inv υ← : ∀ {a} → ₁ B.id C.⇒ C.id υ← {a} = unitor-inv {a = a} .Cr.is-invertible.inv
Lax transformations🔗
By dropping the invertibility requirement when generalising natural transformations to lax functors, we obtain the type of lax transformations between lax functors. If every 2-cell component of the lax transformation is invertible, we refer to it as a pseudonatural transformation. We omit the word “natural” in “lax natural transformation” for brevity.
module _ {B : Prebicategory o ℓ ℓ'} {C : Prebicategory o₁ ℓ₁ ℓ₁'} (F : Lax-functor B C) (G : Lax-functor B C) where private module B = Prebicategory B module C = Prebicategory C module F = Lax-functor F module G = Lax-functor G
The transformation which witnesses directed naturality for a lax
transformation is called the naturator
. In components, it
witnesses commutativity of the diagram
and thus consists of a natural family of 2-cells
record Lax-transfor : Type (o ⊔ ℓ ⊔ ℓ₁ ⊔ ℓ' ⊔ ℓ₁') where field σ : ∀ A → F.₀ A C.↦ G.₀ A naturator : ∀ {a b} → preaction C (σ b) F∘ G.P₁ => postaction C (σ a) F∘ F.P₁ ν→ : ∀ {a b} (f : a B.↦ b) → G.₁ f C.⊗ σ a C.⇒ σ b C.⊗ F.₁ f ν→ = naturator .η
The naturator is required to be compatible with the compositor and unitor natural transformations of its source and target functors, which boil down to commutativity of the nightmarish diagrams in (Leinster 1998, sec. 1.2).
field ν-compositor : ∀ {a b c} (f : b B.↦ c) (g : a B.↦ b) → ν→ (f B.⊗ g) C.∘ (G.γ→ f g C.◀ σ a) ≡ (σ c C.▶ F.γ→ f g) C.∘ C.α→ (σ c) (F.₁ f) (F.₁ g) C.∘ (ν→ f C.◀ F.₁ g) C.∘ C.α← (G.₁ f) (σ b) (F.₁ g) C.∘ (G.₁ f C.▶ ν→ g) C.∘ C.α→ (G.₁ f) (G.₁ g) (σ a) ν-unitor : ∀ {a} → ν→ (B.id {a}) C.∘ (G.unitor C.◀ σ a) ≡ (σ a C.▶ F.unitor) C.∘ C.ρ→ (σ a) C.∘ C.λ← (σ a)
A lax transformation with invertible naturator is called a pseudonatural transformation.
record Pseudonatural : Type (o ⊔ ℓ ⊔ ℓ₁ ⊔ ℓ' ⊔ ℓ₁') where field lax : Lax-transfor open Lax-transfor lax public field naturator-inv : ∀ {a b} (f : a B.↦ b) → C.Hom.is-invertible (ν→ f) ν← : ∀ {a b} (f : a B.↦ b) → σ b C.⊗ F.₁ f C.⇒ G.₁ f C.⊗ σ a ν← f = naturator-inv f .Cr.is-invertible.inv
We abbreviate the types of lax- and pseudonatural transformations by
_=>ₗ_
and _=>ₚ_
,
respectively.
_=>ₗ_ = Lax-transfor _=>ₚ_ = Pseudonatural
Modifications🔗
When dealing with 1-categorical data (categories, functors, and natural transformations), the commutativity in 2-cells is witnessed by equations in a set, which are trivial. When talking about bicategorical data, however, the naturality of a lax transformation is witnessed by a family of non-trivial 2-cells. Therefore, it is fruitful to consider transformations which affect this data: a natural family of 2-cells. This is called a modification between lax (or pseudo) transformations. Since we are directly dealing with sets (the sets of 2-cells), modifications are the simplest bicategorical widget to define.
module _ {B : Prebicategory o ℓ ℓ'} {C : Prebicategory o₁ ℓ₁ ℓ₁'} {F : Lax-functor B C} {G : Lax-functor B C} (σ σ' : F =>ₗ G) where private module B = Prebicategory B module C = Prebicategory C module F = Lax-functor F module G = Lax-functor G module σ = Lax-transfor σ module σ' = Lax-transfor σ'
record Modification : Type (o ⊔ ℓ ⊔ ℓ₁') where field Γ : ∀ a → σ.σ a C.⇒ σ'.σ a is-natural : ∀ {a b} {f : a B.↦ b} → σ'.ν→ f C.∘ (G.₁ f C.▶ Γ a) ≡ (Γ b C.◀ F.₁ f) C.∘ σ.ν→ f
In a diagram, we display a modification as a 3-cell, i.e., a morphism (modification) between morphisms (lax transformations) between morphisms (lax functors) between objects (bicategories), and accordingly draw them with super-heavy arrows, as in the diagram below. Fortunately we will not often stumble onto diagrams of bicategories, rather studying diagrams in bicategories, which are (mercifully) limited to 2-cells.
References
- Leinster, Tom. 1998. “Basic Bicategories.” arXiv. https://doi.org/10.48550/ARXIV.MATH/9810017.