module Cat.Diagram.Coproduct.Copower where

CopowersπŸ”—

Let be a category admitting indexed coproducts, for example a cocomplete category. In the same way that (in ordinary arithmetic) the iterated product of a bunch of copies of the same factor

is called a β€œpower”, we refer to the coproduct of many copies of an object indexed by a set as the copower of by and alternatively denote it If does indeed admit coproducts indexed by any set, then the copowering construction extends to a functor

The notion of copowering gives us slick terminology for a category which admits all coproducts, but not necessarily all colimits: Such a category is precisely one copowered over

  _βŠ—_ : Set β„“ β†’ Ob β†’ Ob
  X βŠ— A = coprods X (Ξ» _ β†’ A) .Ξ£F

Copowers satisfy a universal property: is a representing object for the functor that takes an object to the power of the set of morphisms from to in other words, we have a natural isomorphism

  copower-hom-iso
    : βˆ€ {X A}
    β†’ Hom-from C (X βŠ— A) ≅ⁿ Hom-from (Sets β„“) X F∘ Hom-from C A
  copower-hom-iso {X} {A} = isoβ†’isoⁿ
    (λ _ → equiv→iso (hom-iso (coprods X (λ _ → A))))
    (Ξ» _ β†’ ext Ξ» _ _ β†’ assoc _ _ _)

The action of the copowering functor is given by simultaneously changing the indexing along a function of sets and changing the underlying object by a morphism This is functorial by the uniqueness properties of colimiting maps.

  Copowering : Functor (Sets β„“ Γ—αΆœ C) C
  Copowering .Fβ‚€ (X , A) = X βŠ— A
  Copowering .F₁ {X , A} {Y , B} (idx , obj) =
    coprods X (Ξ» _ β†’ A) .match Ξ» i β†’ coprods Y (Ξ» _ β†’ B) .ΞΉ (idx i) ∘ obj
  Copowering .F-id {X , A} = sym $
    coprods X (Ξ» _ β†’ A) .unique _ Ξ» i β†’ sym id-comm
  Copowering .F-∘ {X , A} f g = sym $
    coprods X (Ξ» _ β†’ A) .unique _ Ξ» i β†’
      pullr (coprods _ _ .commute) βˆ™ extendl (coprods _ _ .commute)
  ∐! : (Idx : Type β„“) ⦃ hl : H-Level Idx 2 ⦄ (F : Idx β†’ Ob) β†’ Ob
  ∐! Idx F = ΣF (coprods (el! Idx) F)

  module ∐! (Idx : Type β„“) ⦃ hl : H-Level Idx 2 ⦄ (F : Idx β†’ Ob) =
    Indexed-coproduct (coprods (el! Idx) F)

  _βŠ—!_ : (Idx : Type β„“) ⦃ hl : H-Level Idx 2 ⦄ β†’ Ob β†’ Ob
  I βŠ—! X = el! I βŠ— X

  module βŠ—! (Idx : Type β„“) ⦃ hl : H-Level Idx 2 ⦄ (X : Ob) =
    Indexed-coproduct (coprods (el! Idx) (Ξ» _ β†’ X))

Constant objectsπŸ”—

If has a terminal object then the copower is referred to as the constant object on By simplifying the universal property of the copower, we obtain that constant objects assemble into a functor left adjoint to 1

  Constant-objects : Functor (Sets β„“) C
  Constant-objects .Fβ‚€ S = S βŠ— *C
  Constant-objects .F₁ f = coprods _ _ .match Ξ» i β†’ coprods _ _ .ΞΉ (f i)
  Constant-objects .F-id = sym $ coprods _ _ .unique _ Ξ» i β†’ idl _
  Constant-objects .F-∘ f g = sym $ coprods _ _ .unique _ Ξ» i β†’
    pullr (coprods _ _ .commute) βˆ™ coprods _ _ .commute

  ConstβŠ£Ξ“ : Constant-objects ⊣ Hom-from _ *C
  ConstβŠ£Ξ“ = hom-isoβ†’adjoints
    (Ξ» f x β†’ f ∘ coprods _ _ .ΞΉ x)
    (is-iso→is-equiv (iso
      (Ξ» h β†’ coprods _ _ .match h)
      (Ξ» h β†’ ext Ξ» i β†’ coprods _ _ .commute)
      (Ξ» x β†’ sym (coprods _ _ .unique _ Ξ» i β†’ refl))))
    (Ξ» g h x β†’ ext Ξ» y β†’ pullr (pullr (coprods _ _ .commute)))

  1. This right adjoint is often called the global sections functor.β†©οΈŽ