module Cat.Diagram.Terminal where
Terminal objects🔗
An object of a category is said to be terminal if it admits a unique map from any other object:
is-terminal : Ob → Type _ is-terminal ob = ∀ x → is-contr (Hom x ob) record Terminal : Type (o ⊔ h) where field top : Ob has⊤ : is-terminal top
We refer to the centre of contraction as !
. Since it inhabits a
contractible type, it is unique.
! : ∀ {x} → Hom x top ! = has⊤ _ .centre !-unique : ∀ {x} (h : Hom x top) → ! ≡ h !-unique = has⊤ _ .paths !-unique₂ : ∀ {x} (f g : Hom x top) → f ≡ g !-unique₂ = is-contr→is-prop (has⊤ _) open Terminal
Uniqueness🔗
If a category has two terminal objects and then there is a unique isomorphism We first establish the isomorphism: Since (resp. is terminal, there is a unique map (resp. To show these maps are inverses, we must show that is But these morphisms inhabit a contractible space, namely the space of maps into so they are equal.
!-invertible : (t1 t2 : Terminal) → is-invertible (! t1 {top t2}) !-invertible t1 t2 = make-invertible (! t2) (!-unique₂ t1 _ _) (!-unique₂ t2 _ _) ⊤-unique : (t1 t2 : Terminal) → top t1 ≅ top t2 ⊤-unique t1 t2 = invertible→iso (! t2) (!-invertible t2 t1)
Hence, if is additionally a category, it has a propositional space of terminal objects:
⊤-contractible : is-category C → is-prop Terminal ⊤-contractible ccat x1 x2 i .top = ccat .to-path (⊤-unique x1 x2) i ⊤-contractible ccat x1 x2 i .has⊤ ob = is-prop→pathp (λ i → is-contr-is-prop {A = Hom _ (ccat .to-path (⊤-unique x1 x2) i)}) (x1 .has⊤ ob) (x2 .has⊤ ob) i is-terminal-iso : ∀ {A B} → A ≅ B → is-terminal A → is-terminal B is-terminal-iso isom term x = contr (isom .to ∘ term x .centre) λ h → isom .to ∘ term x .centre ≡⟨ ap (isom .to ∘_) (term x .paths _) ⟩≡ isom .to ∘ isom .from ∘ h ≡⟨ cancell (isom .invl) ⟩≡ h ∎
In terms of right adjoints🔗
We prove that the inclusion functor of an object of is right adjoint to the unique functor if and only if is terminal.
module _ (x : Ob) (term : is-terminal x) where is-terminal→inclusion-is-right-adjoint : !F ⊣ !Const {C = C} x is-terminal→inclusion-is-right-adjoint = hom-iso→adjoints (e _ .fst) (e _ .snd) λ _ _ _ → term _ .paths _ where e : ∀ y → ⊤ ≃ Hom y x e y = is-contr→≃ (hlevel 0) (term y) module _ (x : Ob) (adj : !F ⊣ !Const {C = C} x) where inclusion-is-right-adjoint→is-terminal : is-terminal x inclusion-is-right-adjoint→is-terminal y = Equiv→is-hlevel 0 (Σ-contract (λ _ → hlevel 0) e⁻¹) (R-adjunct-is-equiv adj .is-eqv _)
module _ {o h} {C : Precategory o h} where open Cat.Reasoning C private unquoteDecl eqv = declare-record-iso eqv (quote Terminal) instance Extensional-Terminal : ∀ {ℓr} → ⦃ sa : Extensional Ob ℓr ⦄ → Extensional (Terminal C) ℓr Extensional-Terminal ⦃ sa ⦄ = embedding→extensional (Iso→Embedding eqv ∙emb (fst , Subset-proj-embedding (λ _ → hlevel 1))) sa