module Order.Instances.Nat where
The usual ordering on natural numbers🔗
This module deals with noting down facts about the usual ordering on
the set of natural numbers; most of the proofs are in the modules Data.Nat.Properties
and
Data.Nat.Order
.
We have already shown that the usual ordering (or “numeric”) ordering on the natural numbers is a poset:
Nat-poset : Poset lzero lzero Nat-poset .P.Ob = Nat Nat-poset .P._≤_ = _≤_ Nat-poset .P.≤-thin = ≤-is-prop Nat-poset .P.≤-refl = ≤-refl Nat-poset .P.≤-trans = ≤-trans Nat-poset .P.≤-antisym = ≤-antisym
We’ve also defined procedures for computing the meets and joins of pairs of natural numbers:
Nat-meets : ∀ x y → Meet Nat-poset x y Nat-meets x y .glb = min x y Nat-meets x y .has-meet .meet≤l = min-≤l x y Nat-meets x y .has-meet .meet≤r = min-≤r x y Nat-meets x y .has-meet .greatest = min-univ x y Nat-joins : ∀ x y → Join Nat-poset x y Nat-joins x y .lub = max x y Nat-joins x y .has-join .l≤join = max-≤l x y Nat-joins x y .has-join .r≤join = max-≤r x y Nat-joins x y .has-join .least = max-univ x y
It’s straightforward to show that this order is bounded below, since we have for any
Nat-bottom : Bottom Nat-poset Nat-bottom .bot = 0 Nat-bottom .has-bottom x = 0≤x
However, it’s not bounded above:
Nat-no-top : ¬ Top Nat-poset Nat-no-top record { top = greatest ; has-top = is-greatest } = let rem₁ : suc greatest ≤ greatest rem₁ = is-greatest (suc greatest) in ¬sucx≤x _ rem₁
This is also a decidable total order; we show totality by proving weak totality, since we already know that the ordering is decidable.
Nat-is-dec-total : is-decidable-total-order Nat-poset Nat-is-dec-total = from-weakly-total (≤-is-weakly-total _ _)