open import Cat.Diagram.Limit.Finite
open import Cat.Diagram.Limit.Base
open import Cat.Diagram.Terminal
open import Cat.Prelude

module Cat.Instances.Sets.Complete where


# Sets is complete🔗

We prove that the category of $o$-sets is $(\iota,\kappa)$-complete for any universe levels $\iota \le o$ and $\kappa \le o$. Inverting this to speak of maxima rather than ordering, to admit all $(\iota,\kappa)$-limits, we must be in at least the category of $(\iota \sqcup \kappa)$-sets, but any extra adjustment $o$ is also acceptable. So, suppose we have an indexing category $\mathcal{D}$ and a diagram $F : \mathcal{D} \to \mathbf{Sets}$; Let’s build a limit for it!

Sets-is-complete : ∀ {ι κ o} → is-complete ι κ (Sets (ι ⊔ κ ⊔ o))
Sets-is-complete {J = D} F = to-limit (to-is-limit lim) module Sets-is-complete where
module D = Precategory D
module F = Functor F
open make-is-limit


Since Set is closed under (arbitrary) products, we can build the limit of an arbitrary diagram $F$ — which we will write $\lim F$ — by first taking the product $\prod_{j : \mathcal{D}} F(j)$ (which is a set of dependent functions), then restricting ourselves to the subset of those for which $F(g) \circ f(x) = f(y)$, i.e., those which are cones over $F$.

  apex : Set _
apex = el! $Σ[ f ∈ ((j : D.Ob) → ∣ F.₀ j ∣) ] (∀ x y (g : D.Hom x y) → F.₁ g (f x) ≡ (f y))  To form a cone, given an object $x : \mathcal{D}$, and an inhabitant $(f,p)$ of the type underlying f-apex, we must cough up (for ψ) an object of $F(x)$; But this is exactly what $f(x)$ gives us. Similarly, since $p$ witnesses that $\psi$ commutes, we can project it directly. Given some other cone $K$, to build a cone homomorphism $K \to \lim F$, recall that $K$ comes equipped with its own function $\psi : \prod_{x : \mathcal{D}} K \to F(x)$, which we can simply flip around to get a function $K \to \prod_{x : \mathcal{D}} F(x)$; This function is in the subset carved out by $\lim F$ since $K$ is a cone, hence $F(f) \circ \psi(x) = \psi(y)$, as required.  -- open Terminal lim : make-is-limit F apex lim .ψ x (f , p) = f x lim .commutes f = funext λ where (_ , p) → p _ _ f lim .universal eta p x = (λ j → eta j x) , λ x y f → p f$ₚ _
lim .factors _ _ = refl
lim .unique eta p other q = funext λ x →
Σ-prop-path hlevel! (funext λ j → q j $ₚ x)  module _ {ℓ} where open import Cat.Diagram.Equaliser (Sets ℓ) open import Cat.Diagram.Pullback (Sets ℓ) open import Cat.Diagram.Product (Sets ℓ) open Precategory (Sets ℓ) private variable A B : Set ℓ f g : ⌞ A ⌟ → ⌞ B ⌟ open Terminal open is-product open Product open is-pullback open Pullback open is-equaliser open Equaliser  ## Finite set-limits🔗 For expository reasons, we present the computation of the most famous shapes of finite limit (terminal objects, products, pullbacks, and equalisers) in the category of sets. All the definitions below are redundant, since finite limits are always small, and thus the category of sets of any level $\ell$ admits them.  Sets-terminal : Terminal (Sets ℓ) Sets-terminal .top = el! (Lift _ ⊤) Sets-terminal .has⊤ _ = hlevel!  Products are given by product sets:  Sets-products : (A B : Set ℓ) → Product A B Sets-products A B .apex = el! (∣ A ∣ × ∣ B ∣) Sets-products A B .π₁ = fst Sets-products A B .π₂ = snd Sets-products A B .has-is-product .⟨_,_⟩ f g x = f x , g x Sets-products A B .has-is-product .π₁∘factor = refl Sets-products A B .has-is-product .π₂∘factor = refl Sets-products A B .has-is-product .unique o p q i x = p i x , q i x  Equalisers are given by carving out the subset of $A$ where $f$ and $g$ agree using $\Sigma$:  Sets-equalisers : (f g : Hom A B) → Equaliser {A = A} {B = B} f g Sets-equalisers {A = A} {B = B} f g = eq where eq : Equaliser f g eq .apex = el! (Σ[ x ∈ ∣ A ∣ ] (f x ≡ g x)) eq .equ = fst eq .has-is-eq .equal = funext snd eq .has-is-eq .universal {e' = e'} p x = e' x , p$ₚ x
eq .has-is-eq .factors = refl
eq .has-is-eq .unique {p = p} q =
funext λ x → Σ-prop-path (λ _ → B .is-tr _ _) (happly q x)


Pullbacks are the same, but carving out a subset of $A \times B$.

  Sets-pullbacks : ∀ {A B C} (f : Hom A C) (g : Hom B C)
→ Pullback {X = A} {Y = B} {Z = C} f g
Sets-pullbacks {A = A} {B = B} {C = C} f g = pb where
pb : Pullback f g
pb .apex = el! \$ Σ[ x ∈ ∣ A ∣ ] Σ[ y ∈ ∣ B ∣ ] (f x ≡ g y)
pb .p₁ (x , _ , _) = x
pb .p₂ (_ , y , _) = y
pb .has-is-pb .square = funext (snd ⊙ snd)
pb .has-is-pb .universal {p₁' = p₁'} {p₂'} p a = p₁' a , p₂' a , happly p a
pb .has-is-pb .p₁∘universal = refl
pb .has-is-pb .p₂∘universal = refl
pb .has-is-pb .unique {p = p} {lim' = lim'} q r i x =
q i x , r i x ,
λ j → is-set→squarep (λ i j → C .is-tr)
(λ j → f (q j x)) (λ j → lim' x .snd .snd j) (happly p x) (λ j → g (r j x)) i j


Hence, Sets is finitely complete:

  open Finitely-complete

Sets-finitely-complete : Finitely-complete (Sets ℓ)
Sets-finitely-complete .terminal = Sets-terminal
Sets-finitely-complete .products = Sets-products
Sets-finitely-complete .equalisers = Sets-equalisers
Sets-finitely-complete .pullbacks = Sets-pullbacks