module Cat.Diagram.Equaliser where
module _ {o β} (C : Precategory o β) where open Cat.Reasoning C private variable A B : Ob f g h : Hom A B
Equalisersπ
The equaliser of two maps when it exists, represents the largest subobject of where and agree. In this sense, the equaliser is the categorical generalisation of a solution set: The solution set of an equation in one variable is largest subset of the domain (i.e.Β what the variable ranges over) where the left- and right-hand-sides agree.
record is-equaliser {E} (f g : Hom A B) (equ : Hom E A) : Type (o β β) where field equal : f β equ β‘ g β equ universal : β {F} {e' : Hom F A} (p : f β e' β‘ g β e') β Hom F E factors : β {F} {e' : Hom F A} {p : f β e' β‘ g β e'} β equ β universal p β‘ e' unique : β {F} {e' : Hom F A} {p : f β e' β‘ g β e'} {other : Hom F E} β equ β other β‘ e' β other β‘ universal p equal-β : f β equ β h β‘ g β equ β h equal-β {h = h} = f β equ β h β‘β¨ extendl equal β©β‘ g β equ β h β uniqueβ : β {F} {e' : Hom F A} {o1 o2 : Hom F E} β f β e' β‘ g β e' β equ β o1 β‘ e' β equ β o2 β‘ e' β o1 β‘ o2 uniqueβ p q r = unique {p = p} q β sym (unique r)
We can visualise the situation using the commutative diagram below:
There is also a convenient bundling of an equalising arrow together with its domain:
record Equaliser (f g : Hom A B) : Type (o β β) where field {apex} : Ob equ : Hom apex A has-is-eq : is-equaliser f g equ open is-equaliser has-is-eq public
Equalisers are monicπ
As a small initial application, we prove that equaliser arrows are always monic:
module _ {o β} {C : Precategory o β} where open Cat.Reasoning C private variable A B : Ob f g h : Hom A B
is-equaliserβis-monic : β {E} (equ : Hom E A) β is-equaliser C f g equ β is-monic equ is-equaliserβis-monic equ equalises g h p = uniqueβ (extendl equal) p refl where open is-equaliser equalises
Uniquenessπ
As universal constructions, equalisers are unique up to isomorphism. The proof follows the usual pattern: if both equalise then we can construct maps between and via the universal property of equalisers, and uniqueness ensures that these maps form an isomorphism.
is-equaliserβiso : {E E' : Ob} β {e : Hom E A} {e' : Hom E' A} β is-equaliser C f g e β is-equaliser C f g e' β E β E' is-equaliserβiso {e = e} {e' = e'} eq eq' = make-iso (eq' .universal (eq .equal)) (eq .universal (eq' .equal)) (uniqueβ eq' (eq' .equal) (pulll (eq' .factors) β eq .factors) (idr _)) (uniqueβ eq (eq .equal) (pulll (eq .factors) β eq' .factors) (idr _)) where open is-equaliser
Properties of equalisersπ
The equaliser of the pair always exists, and is given by the identity map
id-is-equaliser : is-equaliser C f f id id-is-equaliser .is-equaliser.equal = refl id-is-equaliser .is-equaliser.universal {e' = e'} _ = e' id-is-equaliser .is-equaliser.factors = idl _ id-is-equaliser .is-equaliser.unique p = sym (idl _) β p
If is an equaliser and an epimorphism, then is an iso.
equaliser+epiβinvertible : β {E} {e : Hom E A} β is-equaliser C f g e β is-epic e β is-invertible e
Suppose that equalises some pair By definition, this means that however, is an epi, so This in turn means that can be extended into a map via the universal property of and universality ensures that this extension is an isomorphism!
equaliser+epiβinvertible {f = f} {g = g} {e = e} e-equaliser e-epi = make-invertible (universal {e' = id} (apβ _β_ fβ‘g refl)) factors (uniqueβ (apβ _β_ fβ‘g refl) (pulll factors) id-comm) where open is-equaliser e-equaliser fβ‘g : f β‘ g fβ‘g = e-epi f g equal
Categories with all equalisersπ
We also define a helper module for working with categories that have equalisers of all parallel pairs of morphisms.
has-equalisers : β {o β} β Precategory o β β Type _ has-equalisers C = β {a b} (f g : Hom a b) β Equaliser C f g where open Precategory C module Equalisers {o β} (C : Precategory o β) (all-equalisers : has-equalisers C) where open Cat.Reasoning C module equaliser {a b} (f g : Hom a b) = Equaliser (all-equalisers f g) Equ : β {a b} (f g : Hom a b) β Ob Equ = equaliser.apex