open import Cat.Functor.Adjoint.Monadic open import Cat.Functor.Adjoint.Monad open import Cat.Functor.Conservative open import Cat.Functor.Monadic.Beck open import Cat.Diagram.Coequaliser open import Cat.Functor.Equivalence open import Cat.Functor.Adjoint open import Cat.Diagram.Monad open import Cat.Prelude import Cat.Functor.Reasoning as F-r import Cat.Reasoning as C-r module Cat.Functor.Monadic.Crude {o ℓ o′ ℓ′} {C : Precategory o ℓ} {D : Precategory o′ ℓ′} {F : Functor C D} {U : Functor D C} (F⊣U : F ⊣ U) where

# Crude monadicity🔗

We present a refinement of the conditions laid out in Beck’s
coequaliser for when an adjunction
$F \dashv G$
is monadic: The
**crude monadicity theorem**. The proof we present is
adapted from [Mac Lane and
Moerdijk (1994),
chap. IV; sect. 4], where it is applied to the setting of elementary
topoi, but carried out in full generality.

Recall our setup. We have a left
adjoint functor
$F : \mathcal{C} \to \mathcal{D}$
(call its right adjoint
$U$),
and we’re interested in characterising exactly when the comparison
functor
$K : \mathcal{D} \to \mathcal{C}^{UF}$
into the Eilenberg-Moore
category of the monad from
the adjunction is an equivalence. Our refinement here gives a
*sufficient* condition.

**Theorem** (Crude monadicity). Let the functors
$F$,
$U$
be as in the paragraph above, and abbreviate the resulting monad by
$T$;
Denote the comparison functor by
$K$.

If $\mathcal{D}$ has Beck’s coequalisers for any $T$-algebra, then $K$ has a left adjoint $K^{-1} \dashv K$;

If, in addition, $U$ preserves coequalisers for any pair which has a common right inverse, then the unit of the adjunction $\eta$ is a natural isomorphism;

If, in addition, $U$ is conservative, then the counit of the adjunction $\eta$ is also a natural isomorphism, and $K$ is an equivalence of precategories.

**Proof** We already established (1) here.

Let us show (2). Suppose that
$\mathcal{D}$
has Beck’s coequalisers and that
$U$
preserves coequalisers of pairs of morphisms with a common right inverse
(we call these coequalisers **reflexive**):

private U-preserves-reflexive-coeqs : Type _ U-preserves-reflexive-coeqs = ∀ {A B} {f g : D.Hom A B} (i : D.Hom B A) → (f D.∘ i ≡ D.id) → (g D.∘ i ≡ D.id) → (coequ : Coequaliser D f g) → is-coequaliser C (U.₁ f) (U.₁ g) (U.₁ (coequ .Coequaliser.coeq)) module _ (has-coeq : (M : Algebra C T) → Coequaliser D (F.₁ (M .snd .ν)) (counit.ε _)) (U-pres : U-preserves-reflexive-coeqs) where

-- N.B.: In the code we abbreviate "preserves reflexive coequalisers" -- by "prcoeq". prcoeq→unit-is-iso : ∀ {o} → C^T.is-invertible (adj.unit.η o) prcoeq→unit-is-iso {o} = C^T.make-invertible inverse (Algebra-hom-path C η⁻¹η) (Algebra-hom-path C ηη⁻¹) where

The first thing we note is that Beck’s coequaliser is reflexive: The
common right inverse is
$F\eta$.
It’s straightforward to calculate that this map *is* a right
inverse; let me point out that it follows from the triangle identities
for
$F \dashv U$
and the algebra laws.

abstract preserved : is-coequaliser C (UF.₁ (o .snd .ν)) (U.₁ (counit.ε (F.₀ (o .fst)))) (U.₁ (has-coeq o .coeq)) preserved = U-pres (F.₁ (unit.η _)) (F.annihilate (o .snd .ν-unit)) zig (has-coeq o)

It follows, since $U$ preserves coequalisers, that both rows of the diagram

are coequalisers, hence there is a unique isomorphism $\eta_o^{-1}$ making the diagram commute. This is precisely the inverse to $\eta_o$ we’re seeking.

η⁻¹ : C.Hom (U.₀ (coapex (has-coeq o))) (o .fst) η⁻¹η : adj.unit.η _ .morphism C.∘ η⁻¹ ≡ C.id ηη⁻¹ : η⁻¹ C.∘ adj.unit.η _ .morphism ≡ C.id η⁻¹ = preserved .universal {e′ = o .snd .ν} (o .snd .ν-mult) η⁻¹η = is-coequaliser.unique₂ preserved {e′ = U.₁ (has-coeq o .coeq)} (preserved .coequal) (C.pullr (preserved .factors) ∙ C.pullr (unit.is-natural _ _ _) ∙ C.pulll (preserved .coequal) ∙ C.cancelr zag) (C.idl _) ηη⁻¹ = C.pulll (preserved .factors) ∙ o .snd .ν-unit

It remains to show that $\eta^{-1}$ is a homomorphism of algebras. This is a calculation reusing the established proof that $\eta^{-1}\eta = \mathrm{id}_{}$ established using the universal property of coequalisers above.

inverse : C^T.Hom (U.₀ _ , _) o inverse .morphism = η⁻¹ inverse .commutes = η⁻¹ C.∘ U.₁ (counit.ε _) ≡⟨ C.refl⟩∘⟨ ap U.₁ (D.intror (F.annihilate (C.assoc _ _ _ ∙ η⁻¹η))) ⟩≡ η⁻¹ C.∘ U.₁ (counit.ε _ D.∘ F.₁ (U.₁ (has-coeq o .coeq)) D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.refl⟩∘⟨ ap U.₁ (D.extendl (counit.is-natural _ _ _)) ⟩≡ η⁻¹ C.∘ U.₁ (has-coeq o .coeq D.∘ counit.ε _ D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.refl⟩∘⟨ U.F-∘ _ _ ⟩≡ η⁻¹ C.∘ U.₁ (has-coeq o .coeq) C.∘ U.₁ (counit.ε _ D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.pulll (preserved .factors) ⟩≡ o .snd .ν C.∘ U.₁ (counit.ε _ D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.refl⟩∘⟨ ap U.₁ (ap (counit.ε _ D.∘_) (F.F-∘ _ _) ∙ D.cancell zig) ⟩≡ o .snd .ν C.∘ UF.₁ η⁻¹ ∎

For (3), suppose additionally that $U$ is conservative. Recall that the counit $\varepsilon$ for the $K^{-1} \dashv K$ adjunction is defined as the unique dotted map which fits into

But observe that the diagram

is *also* a coequaliser; Hence, since
$U$
preserves the coequaliser
$FUA \twoheadrightarrow K^{-1}KA$,
the map
$U\varepsilon : UK^{-1}KA \cong UA$;
But by assumption
$U$
is conservative, so
$\varepsilon$
is an isomorphism, as desired.

conservative-prcoeq→counit-is-iso : ∀ {o} → is-conservative U → D.is-invertible (adj.counit.ε o) conservative-prcoeq→counit-is-iso {o} reflect-iso = reflect-iso $ C.make-invertible (U.₁ (coequ .coeq) C.∘ unit.η _) (U.pulll (coequ .factors) ∙ zag) inversel where oalg = Comparison F⊣U .F₀ o coequ = has-coeq oalg abstract preserved : is-coequaliser C (UF.₁ (oalg .snd .ν)) (U.₁ (counit.ε (F.₀ (oalg .fst)))) (U.₁ (coequ .coeq)) preserved = U-pres (F.₁ (unit.η _)) (F.annihilate (oalg .snd .ν-unit)) zig coequ inversel = is-coequaliser.unique₂ preserved {e′ = U.₁ (coequ .coeq)} (preserved .coequal) (C.pullr (U.collapse (coequ .factors)) ∙ C.pullr (unit.is-natural _ _ _) ∙ C.pulll (preserved .coequal) ∙ C.cancelr zag) (C.idl _)

Packaging it all up, we get the claimed theorem: If $\mathcal{D}$ has Beck’s coequalisers, and $U$ is a conservative functor which preserves reflexive coequalisers, then the adjunction $F \dashv U$ is monadic.

crude-monadicity : (has-coeq : (M : Algebra C T) → Coequaliser D (F.₁ (M .snd .ν)) (counit.ε _)) (U-pres : U-preserves-reflexive-coeqs) (U-conservative : is-conservative U) → is-monadic F⊣U crude-monadicity coeq pres cons = eqv′ where open is-equivalence eqv : is-equivalence (Comparison⁻¹ F⊣U coeq) eqv .F⁻¹ = Comparison F⊣U eqv .F⊣F⁻¹ = Comparison⁻¹⊣Comparison F⊣U coeq eqv .unit-iso _ = prcoeq→unit-is-iso coeq pres eqv .counit-iso _ = conservative-prcoeq→counit-is-iso coeq pres cons eqv′ = inverse-equivalence eqv

## References

- Mac Lane, Saunders, and Ieke Moerdijk. 1994.
*Sheaves in Geometry and Logic: A First Introduction to Topos Theory*. Universitext. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4612-0927-0.