module Cat.Functor.Monadic.Crude {o ℓ o' ℓ'} {C : Precategory o ℓ} {D : Precategory o' ℓ'} {F : Functor C D} {U : Functor D C} (F⊣U : F ⊣ U) where
private module F = F-r F module U = F-r U module C = C-r C module D = C-r D module UF = F-r (U F∘ F) module T = Monad (Adjunction→Monad F⊣U) T : Monad C T = Adjunction→Monad F⊣U C^T : Precategory _ _ C^T = Eilenberg-Moore T module C^T = C-r C^T open _⊣_ F⊣U open _=>_ open Algebra-on open Total-hom
Crude monadicity🔗
We present a refinement of the conditions laid out in Beck’s coequaliser for when an adjunction is monadic: The crude monadicity theorem. The proof we present is adapted from [Mac Lane and Moerdijk (1994), chap. IV; sect. 4], where it is applied to the setting of elementary topoi, but carried out in full generality.
Recall our setup. We have a left adjoint functor (call its right adjoint and we’re interested in characterising exactly when the comparison functor into the Eilenberg-Moore category of the monad from the adjunction is an equivalence. Our refinement here gives a sufficient condition.
Theorem (Crude monadicity). Let the functors be as in the paragraph above, and abbreviate the resulting monad by Denote the comparison functor by
If has Beck’s coequalisers for any then has a left adjoint
If, in addition, preserves coequalisers for any pair which has a common right inverse, then the unit of the adjunction is a natural isomorphism;
If, in addition, is conservative, then the counit of the adjunction is also a natural isomorphism, and is an equivalence of precategories.
Proof We already established (1) here.
Let us show (2). Suppose that has Beck’s coequalisers and that preserves coequalisers of pairs of morphisms with a common right inverse (we call these coequalisers reflexive):
private U-preserves-reflexive-coeqs : Type _ U-preserves-reflexive-coeqs = ∀ {A B} {f g : D.Hom A B} (i : D.Hom B A) → (f D.∘ i ≡ D.id) → (g D.∘ i ≡ D.id) → (coequ : Coequaliser D f g) → is-coequaliser C (U.₁ f) (U.₁ g) (U.₁ (coequ .Coequaliser.coeq)) module _ (has-coeq : (M : Algebra T) → Coequaliser D (F.₁ (M .snd .ν)) (counit.ε _)) (U-pres : U-preserves-reflexive-coeqs) where
open is-coequaliser open Coequaliser open Functor private K⁻¹ : Functor C^T D K⁻¹ = Comparison-EM⁻¹ F⊣U has-coeq K⁻¹⊣K : K⁻¹ ⊣ Comparison-EM F⊣U K⁻¹⊣K = Comparison-EM⁻¹⊣Comparison-EM F⊣U has-coeq module adj = _⊣_ K⁻¹⊣K
-- N.B.: In the code we abbreviate "preserves reflexive coequalisers" -- by "prcoeq". prcoeq→unit-is-iso : ∀ {o} → C^T.is-invertible (adj.unit.η o) prcoeq→unit-is-iso {o} = C^T.make-invertible inverse (ext η⁻¹η) (ext ηη⁻¹) where
The first thing we note is that Beck’s coequaliser is reflexive: The common right inverse is It’s straightforward to calculate that this map is a right inverse; let me point out that it follows from the triangle identities for and the algebra laws.
abstract preserved : is-coequaliser C (UF.₁ (o .snd .ν)) (U.₁ (counit.ε (F.₀ (o .fst)))) (U.₁ (has-coeq o .coeq)) preserved = U-pres (F.₁ (unit.η _)) (F.annihilate (o .snd .ν-unit)) zig (has-coeq o)
It follows, since preserves coequalisers, that both rows of the diagram
are coequalisers, hence there is a unique isomorphism making the diagram commute. This is precisely the inverse to we’re seeking.
η⁻¹ : C.Hom (U.₀ (coapex (has-coeq o))) (o .fst) η⁻¹η : adj.unit.η _ .hom C.∘ η⁻¹ ≡ C.id ηη⁻¹ : η⁻¹ C.∘ adj.unit.η _ .hom ≡ C.id η⁻¹ = preserved .universal {e' = o .snd .ν} (o .snd .ν-mult) η⁻¹η = is-coequaliser.unique₂ preserved {e' = U.₁ (has-coeq o .coeq)} (preserved .coequal) (C.pullr (preserved .factors) ∙ C.pullr (unit.is-natural _ _ _) ∙ C.pulll (preserved .coequal) ∙ C.cancelr zag) (C.idl _) ηη⁻¹ = C.pulll (preserved .factors) ∙ o .snd .ν-unit
It remains to show that is a homomorphism of algebras. This is a calculation reusing the established proof that established using the universal property of coequalisers above.
inverse : C^T.Hom (U.₀ _ , _) o inverse .hom = η⁻¹ inverse .preserves = η⁻¹ C.∘ U.₁ (counit.ε _) ≡⟨ C.refl⟩∘⟨ ap U.₁ (D.intror (F.annihilate (C.assoc _ _ _ ∙ η⁻¹η))) ⟩≡ η⁻¹ C.∘ U.₁ (counit.ε _ D.∘ F.₁ (U.₁ (has-coeq o .coeq)) D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.refl⟩∘⟨ ap U.₁ (D.extendl (counit.is-natural _ _ _)) ⟩≡ η⁻¹ C.∘ U.₁ (has-coeq o .coeq D.∘ counit.ε _ D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.refl⟩∘⟨ U.F-∘ _ _ ⟩≡ η⁻¹ C.∘ U.₁ (has-coeq o .coeq) C.∘ U.₁ (counit.ε _ D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.pulll (preserved .factors) ⟩≡ o .snd .ν C.∘ U.₁ (counit.ε _ D.∘ F.₁ (unit.η _ C.∘ η⁻¹)) ≡⟨ C.refl⟩∘⟨ ap U.₁ (ap (counit.ε _ D.∘_) (F.F-∘ _ _) ∙ D.cancell zig) ⟩≡ o .snd .ν C.∘ UF.₁ η⁻¹ ∎
For (3), suppose additionally that is conservative. Recall that the counit for the adjunction is defined as the unique dotted map which fits into
But observe that the diagram
is also a coequaliser; Hence, since preserves the coequaliser the map But by assumption is conservative, so is an isomorphism, as desired.
conservative-prcoeq→counit-is-iso : ∀ {o} → is-conservative U → D.is-invertible (adj.counit.ε o) conservative-prcoeq→counit-is-iso {o} reflect-iso = reflect-iso $ C.make-invertible (U.₁ (coequ .coeq) C.∘ unit.η _) (U.pulll (coequ .factors) ∙ zag) inversel where oalg = Comparison-EM F⊣U .F₀ o coequ = has-coeq oalg abstract preserved : is-coequaliser C (UF.₁ (oalg .snd .ν)) (U.₁ (counit.ε (F.₀ (oalg .fst)))) (U.₁ (coequ .coeq)) preserved = U-pres (F.₁ (unit.η _)) (F.annihilate (oalg .snd .ν-unit)) zig coequ inversel = is-coequaliser.unique₂ preserved {e' = U.₁ (coequ .coeq)} (preserved .coequal) (C.pullr (U.collapse (coequ .factors)) ∙ C.pullr (unit.is-natural _ _ _) ∙ C.pulll (preserved .coequal) ∙ C.cancelr zag) (C.idl _)
Packaging it all up, we get the claimed theorem: If has Beck’s coequalisers, and is a conservative functor which preserves reflexive coequalisers, then the adjunction is monadic.
crude-monadicity : (has-coeq : (M : Algebra T) → Coequaliser D (F.₁ (M .snd .ν)) (counit.ε _)) (U-pres : U-preserves-reflexive-coeqs) (U-conservative : is-conservative U) → is-monadic F⊣U crude-monadicity coeq pres cons = eqv' where open is-equivalence eqv : is-equivalence (Comparison-EM⁻¹ F⊣U coeq) eqv .F⁻¹ = Comparison-EM F⊣U eqv .F⊣F⁻¹ = Comparison-EM⁻¹⊣Comparison-EM F⊣U coeq eqv .unit-iso _ = prcoeq→unit-is-iso coeq pres eqv .counit-iso _ = conservative-prcoeq→counit-is-iso coeq pres cons eqv' = inverse-equivalence eqv
References
- Mac Lane, Saunders, and Ieke Moerdijk. 1994. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4612-0927-0.