module Cat.Displayed.Total.Op where open Functor open Total-hom
Total oppositesπ
Opposites of displayed categories are somewhat subtle, as there are multiple constructions that one could reasonably call the βoppositeβ. The most obvious construction is to construct a new displayed category over we call this category the total opposite of
module _ {o β o' β'} {β¬ : Precategory o β} (β° : Displayed β¬ o' β') where open Precategory β¬ open Displayed β° _^total-op : Displayed (β¬ ^op) o' β' _^total-op .Displayed.Ob[_] x = Ob[ x ] _^total-op .Displayed.Hom[_] f x y = Hom[ f ] y x _^total-op .Displayed.Hom[_]-set f x y = Hom[ f ]-set y x _^total-op .Displayed.id' = id' _^total-op .Displayed._β'_ f' g' = g' β' f' _^total-op .Displayed.idr' f' = idl' f' _^total-op .Displayed.idl' f' = idr' f' _^total-op .Displayed.assoc' f' g' h' = symP $ assoc' h' g' f'
Much like the opposite of categories, the total opposite is an involution on displayed categories.
total-op-involution : β {o β o' β'} {β¬ : Precategory o β} {β° : Displayed β¬ o' β'} β (β° ^total-op) ^total-op β‘ β° total-op-involution {β° = β°} = path where open Displayed path : (β° ^total-op) ^total-op β‘ β° path i .Ob[_] = β° .Ob[_] path i .Hom[_] = β° .Hom[_] path i .Hom[_]-set = β° .Hom[_]-set path i .id' = β° .id' path i ._β'_ = β° ._β'_ path i .idr' = β° .idr' path i .idl' = β° .idl' path i .assoc' = β° .assoc'
The total opposites and total categoriesπ
The reason we refer to this construction as the total opposite is that its total is equal to the opposite of the total category! To show this, we first need to prove some lemmas relating the morphisms of the total category of the total opposite to those in the opposite of the total category. These functions are essentially the identity function, but we canβt convince Agda that this is the case due to definitional equality reasons.
total-opβtotal-hom : β {o β o' β'} {β¬ : Precategory o β} {β° : Displayed β¬ o' β'} β β {x y} β Total-hom (β° ^total-op) x y β Total-hom β° y x total-opβtotal-hom f = total-hom (f .hom) (f .preserves) total-homβtotal-op : β {o β o' β'} {β¬ : Precategory o β} {β° : Displayed β¬ o' β'} β β {x y} β Total-hom β° y x β Total-hom (β° ^total-op) x y total-homβtotal-op f = total-hom (f .hom) (f .preserves)
Furthermore, these two maps constitute an equivalence, and thus yield an equality of types via univalence.
total-opβtotal-hom-is-equiv : β {o β o' β'} {β¬ : Precategory o β} {β° : Displayed β¬ o' β'} β β {x y} β is-equiv (total-opβtotal-hom {β° = β°} {x = x} {y = y}) total-opβtotal-hom-is-equiv = is-isoβis-equiv $ iso total-homβtotal-op (Ξ» _ β refl) (Ξ» _ β refl) total-opβ‘total-hom : β {o β o' β'} {β¬ : Precategory o β} {β° : Displayed β¬ o' β'} β β {x y} β Total-hom (β° ^total-op) x y β‘ Total-hom β° y x total-opβ‘total-hom = ua $ total-opβtotal-hom , total-opβtotal-hom-is-equiv
We can use the fact that total-opβtotal-hom
is an
equivalence to construct an isomorphism of precategories.
β«total-opββ«^op : β {o β o' β'} {β¬ : Precategory o β} (β° : Displayed β¬ o' β') β Functor (β« (β° ^total-op)) ((β« β°) ^op) β«total-opββ«^op _ .Fβ x = x β«total-opββ«^op _ .Fβ f = total-opβtotal-hom f β«total-opββ«^op _ .F-id = refl β«total-opββ«^op _ .F-β _ _ = refl β«total-opβ β«^op : β {o β o' β'} {β¬ : Precategory o β} (β° : Displayed β¬ o' β') β is-precat-iso (β«total-opββ«^op β°) β«total-opβ β«^op β° .is-precat-iso.has-is-ff = total-opβtotal-hom-is-equiv β«total-opβ β«^op β° .is-precat-iso.has-is-iso = id-equiv
Finally, we show that this extends to an equality of categories.
β«total-opβ‘β«^op : β {o β o' β'} {β¬ : Precategory o β} (β° : Displayed β¬ o' β') β β« (β° ^total-op) β‘ (β« β°) ^op β«total-opβ‘β«^op β° = Precategory-path (β«total-opββ«^op β°) (β«total-opβ β«^op β°)
Functors between fibresπ
If there is a functor between the fibres of a displayed category then we also obtain a functor between the fibres of the total opposite of
fibre-functor-total-op : β {o β o' β'} {β¬ : Precategory o β} {β° : Displayed β¬ o' β'} {x y} β Functor (Fibre β° x) (Fibre β° y) β Functor (Fibre (β° ^total-op) x) (Fibre (β° ^total-op) y) fibre-functor-total-op F .Fβ = F .Fβ fibre-functor-total-op F .Fβ = F .Fβ fibre-functor-total-op F .F-id = F .F-id fibre-functor-total-op {β° = β°} F .F-β f g = ap (F .Fβ) (DR.reindex β° _ _ ) Β·Β· F .F-β g f Β·Β· DR.reindex β° _ _
fibre-functor-total-op-total-op : β {o β o' β'} {β¬ : Precategory o β} {β° : Displayed β¬ o' β'} {x y} β {F : Functor (Fibre β° x) (Fibre β° y)} β fibre-functor-total-op (fibre-functor-total-op F) β‘ F fibre-functor-total-op-total-op {F = F} i .Fβ = F .Fβ fibre-functor-total-op-total-op {F = F} i .Fβ = F .Fβ fibre-functor-total-op-total-op {F = F} i .F-id = F .F-id fibre-functor-total-op-total-op {β° = β°} {y = y} {F = F} i .F-β f g = is-propβpathp (Ξ» i β Hom-set _ _ _ (F .Fβ f β F .Fβ g)) ((fibre-functor-total-op (fibre-functor-total-op F)) .F-β f g) (F .F-β f g) i where open Precategory (Fibre β° y) {-# REWRITE fibre-functor-total-op-total-op #-}