module Cat.Displayed.Instances.TotalProduct {oโ โโ oโ โโ oโ โโ oโ โโ} (C : Precategory oโ โโ) (D : Precategory oโ โโ) (EC : Displayed C oโ โโ) (ED : Displayed D oโ โโ) where private module EC = Displayed EC private module ED = Displayed ED
The total product of displayed categories๐
If and are displayed categories, then we can define their total product which is again a displayed category.
_รแตแดฐ_ : Displayed (C รแถ D) (oโ โ oโ) (โโ โ โโ)If displayed categories are regarded as functors, then the product of displayed categories can be regarded as the usual product of functors.
_รแตแดฐ_ .Displayed.Ob[_] (pโ , pโ) = EC.Ob[ pโ ] ร ED.Ob[ pโ ] _รแตแดฐ_ .Displayed.Hom[_] (fโ , fโ) (cโ , cโ) (dโ , dโ) = EC.Hom[ fโ ] cโ dโ ร ED.Hom[ fโ ] cโ dโ _รแตแดฐ_ .Displayed.id' = (EC.id' , ED.id')
We establish that the hom sets of the product fibration are actually sets.
If (so and (so is then for any two morphisms lying over and any
_รแตแดฐ_ .Displayed.Hom[_]-set _ _ _ = hlevel 2Composition is pairwise.
_รแตแดฐ_ .Displayed._โ'_ (fโ , fโ) (gโ , gโ) = EC._โ'_ fโ gโ , ED._โ'_ fโ gโ
Associativity and left/right identity laws hold because they hold for the components of the ordered pairs.
_รแตแดฐ_ .Displayed.idr' (fโ , fโ) = EC.idr' fโ ,โ ED.idr' fโ _รแตแดฐ_ .Displayed.idl' (fโ , fโ) = EC.idl' fโ ,โ ED.idl' fโ _รแตแดฐ_ .Displayed.assoc' (fโ , fโ) (gโ , gโ) (hโ , hโ) = EC.assoc' fโ gโ hโ ,โ ED.assoc' fโ gโ hโ