module Cat.Displayed.Instances.TotalProduct {oβ ββ oβ ββ oβ ββ oβ ββ} (C : Precategory oβ ββ) (D : Precategory oβ ββ) (EC : Displayed C oβ ββ) (ED : Displayed D oβ ββ) where private module EC = Displayed EC private module ED = Displayed ED
The total product of displayed categoriesπ
If and are displayed categories, then we can define their total product which is again a displayed category.
_Γα΅α΄°_ : Displayed (C ΓαΆ D) (oβ β oβ) (ββ β ββ)If displayed categories are regarded as functors, then the product of displayed categories can be regarded as the usual product of functors.
_Γα΅α΄°_ .Displayed.Ob[_] (pβ , pβ) = EC.Ob[ pβ ] Γ ED.Ob[ pβ ] _Γα΅α΄°_ .Displayed.Hom[_] (fβ , fβ) (cβ , cβ) (dβ , dβ) = EC.Hom[ fβ ] cβ dβ Γ ED.Hom[ fβ ] cβ dβ _Γα΅α΄°_ .Displayed.id' = (EC.id' , ED.id')
We establish that the hom sets of the product fibration are actually sets.
If (so and (so is then for any two morphisms lying over and any
_Γα΅α΄°_ .Displayed.Hom[_]-set _ _ _ = hlevel 2Composition is pairwise.
_Γα΅α΄°_ .Displayed._β'_ (fβ , fβ) (gβ , gβ) = EC._β'_ fβ gβ , ED._β'_ fβ gβ
Associativity and left/right identity laws hold because they hold for the components of the ordered pairs.
_Γα΅α΄°_ .Displayed.idr' (fβ , fβ) = EC.idr' fβ ,β ED.idr' fβ _Γα΅α΄°_ .Displayed.idl' (fβ , fβ) = EC.idl' fβ ,β ED.idl' fβ _Γα΅α΄°_ .Displayed.assoc' (fβ , fβ) (gβ , gβ) (hβ , hβ) = EC.assoc' fβ gβ hβ ,β ED.assoc' fβ gβ hβ