module Cat.Diagram.Limit.Product {o h} (C : Precategory o h) where
Products are limitsπ
We establish the correspondence between binary products and limits over the functor out of the two-object category which maps to and to
The two-way correspondence between products and terminal cones is simple enough to establish by appropriately shuffling the data.
is-productβis-limit : β {x} {F : Functor 2-object-category C} {eps : Const x => F} β is-product C (eps .Ξ· true) (eps .Ξ· false) β is-limit {C = C} F x eps is-productβis-limit {x = x} {F} {eps} is-prod = to-is-limitp ml Ξ» where {true} β refl {false} β refl where module is-prod = is-product is-prod open make-is-limit ml : make-is-limit F x ml .Ο j = eps .Ξ· j ml .commutes f = sym (eps .is-natural _ _ _) β idr _ ml .universal eps _ = is-prod.β¨ eps true , eps false β©is-prod. ml .factors {true} eps _ = is-prod.Οβββ¨β© ml .factors {false} eps _ = is-prod.Οβββ¨β© ml .unique eps p other q = is-prod.unique (q true) (q false) is-limitβis-product : β {a b} {K : Functor β€Cat C} β {eps : K Fβ !F => 2-object-diagram a b} β is-ran !F (2-object-diagram a b) K eps β is-product C (eps .Ξ· true) (eps .Ξ· false) is-limitβis-product {a} {b} {K} {eps} lim = prod where module lim = is-limit lim D : Functor 2-object-category C D = 2-object-diagram a b pair : β {y} β Hom y a β Hom y b β β (j : Bool) β Hom y (D .Fβ j) pair p1 p2 true = p1 pair p1 p2 false = p2 pair-commutes : β {y} {p1 : Hom y a} {p2 : Hom y b} β {i j : Bool} β (p : i β‘ j) β D .Fβ p β pair p1 p2 i β‘ pair p1 p2 j pair-commutes {p1 = p1} {p2 = p2} = J (Ξ» _ p β D .Fβ p β pair p1 p2 _ β‘ pair p1 p2 _) (eliml (D .F-id)) prod : is-product C (eps .Ξ· true) (eps .Ξ· false) prod .β¨_,_β© f g = lim.universal (pair f g) pair-commutes prod .Οβββ¨β© {_} {p1'} {p2'} = lim.factors (pair p1' p2') pair-commutes prod .Οβββ¨β© {_} {p1'} {p2'} = lim.factors (pair p1' p2') pair-commutes prod .unique {other = other} p q = lim.unique _ _ other Ξ» where true β p false β q ProductβLimit : β {F : Functor 2-object-category C} β Product C (F # true) (F # false) β Limit F ProductβLimit prod = to-limit (is-productβis-limit {eps = 2-object-nat-trans _ _} (has-is-product prod)) LimitβProduct : β {a b} β Limit (2-object-diagram a b) β Product C a b LimitβProduct lim .apex = Limit.apex lim LimitβProduct lim .Οβ = Limit.cone lim .Ξ· true LimitβProduct lim .Οβ = Limit.cone lim .Ξ· false LimitβProduct lim .has-is-product = is-limitβis-product (Limit.has-limit lim)
Indexed products as limitsπ
In the particular case where
is a groupoid, e.g.Β because it arises as the space of objects of a univalent category,
an indexed
product for
is the same thing as a limit over
considered as a functor
We can not lift this restriction: If
is not a groupoid, then its path spaces
are not necessarily sets, and so the Disc
construction does not apply to
it.
module _ {β} {I : Type β} (i-is-grpd : is-groupoid I) (F : I β Ob) where open _=>_ ProjβCone : β {x} β (β i β Hom x (F i)) β Const x => Disc-adjunct {C = C} {iss = i-is-grpd} F ProjβCone Ο .Ξ· i = Ο i ProjβCone Ο .is-natural i j p = J (Ξ» j p β Ο j β id β‘ subst (Hom (F i) β F) p id β Ο i) (idr _ β introl (transport-refl id)) p is-indexed-productβis-limit : β {x} {Ο : β i β Hom x (F i)} β is-indexed-product C F Ο β is-limit (Disc-adjunct F) x (ProjβCone Ο) is-indexed-productβis-limit {x = x} {Ο} ip = to-is-limitp ml refl where module ip = is-indexed-product ip open make-is-limit ml : make-is-limit (Disc-adjunct F) x ml .Ο j = Ο j ml .commutes {i} {j} p = J (Ξ» j p β subst (Hom (F i) β F) p id β Ο i β‘ Ο j) (eliml (transport-refl _)) p ml .universal eps p = ip.tuple eps ml .factors eps p = ip.commute ml .unique eps p other q = ip.unique eps q is-limitβis-indexed-product : β {K : Functor β€Cat C} β {eps : K Fβ !F => Disc-adjunct {iss = i-is-grpd} F} β is-ran !F (Disc-adjunct F) K eps β is-indexed-product C F (eps .Ξ·) is-limitβis-indexed-product {K = K} {eps} lim = ip where module lim = is-limit lim open is-indexed-product ip : is-indexed-product C F (eps .Ξ·) ip .tuple k = lim.universal k (J (Ξ» j p β subst (Hom (F _) β F) p id β k _ β‘ k j) (eliml (transport-refl _))) ip .commute = lim.factors _ _ ip .unique k comm = lim.unique _ _ _ comm IPβLimit : Indexed-product C F β Limit {C = C} (Disc-adjunct {iss = i-is-grpd} F) IPβLimit ip = to-limit (is-indexed-productβis-limit has-is-ip) where open Indexed-product ip LimitβIP : Limit {C = C} (Disc-adjunct {iss = i-is-grpd} F) β Indexed-product C F LimitβIP lim .Indexed-product.Ξ F = _ LimitβIP lim .Indexed-product.Ο = _ LimitβIP lim .Indexed-product.has-is-ip = is-limitβis-indexed-product (Limit.has-limit lim)