module Order.Instances.Product where
Products of posets🔗
Specialising the construction of pointwise orderings, we can show that the product of two partial orders is given by equipping the product of their underlying sets with an ordering given on components:
_×ᵖ_ : ∀ {o o' ℓ ℓ'} → Poset o ℓ → Poset o' ℓ' → Poset (o ⊔ o') (ℓ ⊔ ℓ') P ×ᵖ Q = po module ×ᵖ where module P = Pr P module Q = Pr Q po : Poset _ _ po .Poset.Ob = P.Ob × Q.Ob po .Poset._≤_ (x , x') (y , y') = x P.≤ y × x' Q.≤ y' po .Poset.≤-thin = hlevel 1 po .Poset.≤-refl = P.≤-refl , Q.≤-refl po .Poset.≤-trans (f≤g , f≤g') (g≤h , g≤h') = P.≤-trans f≤g g≤h , Q.≤-trans f≤g' g≤h' po .Poset.≤-antisym (f≤g , f≤g') (g≤f , g≤f') = P.≤-antisym f≤g g≤f ,ₚ Q.≤-antisym f≤g' g≤f' {-# DISPLAY ×ᵖ.po a b = a ×ᵖ b #-} infixr 20 _×ᵖ_
fstᵖ : Monotone (P ×ᵖ Q) P fstᵖ .hom = fst fstᵖ .pres-≤ = fst sndᵖ : Monotone (P ×ᵖ Q) Q sndᵖ .hom = snd sndᵖ .pres-≤ = snd pairᵖ : ∀ {o ℓ} {R : Poset o ℓ} → Monotone R P → Monotone R Q → Monotone R (P ×ᵖ Q) pairᵖ f g .hom x = f · x , g · x pairᵖ f g .pres-≤ x≤y = f .pres-≤ x≤y , g .pres-≤ x≤y
It’s straightforward to show this really is the product in
Posets-has-products : ∀ {o ℓ} → has-products (Posets o ℓ) Posets-has-products P Q .apex = P ×ᵖ Q Posets-has-products P Q .π₁ = fstᵖ Posets-has-products P Q .π₂ = sndᵖ Posets-has-products P Q .has-is-product .⟨_,_⟩ = pairᵖ Posets-has-products P Q .has-is-product .π₁∘⟨⟩ = trivial! Posets-has-products P Q .has-is-product .π₂∘⟨⟩ = trivial! Posets-has-products P Q .has-is-product .unique α β = ext λ x → α ·ₚ x ,ₚ β ·ₚ x
As a related observation, we can show that the unique partial order on the set with one element is the terminal object in
Posets-terminal : ∀ {o ℓ} → Terminal (Posets o ℓ) Posets-terminal .top = 𝟙ᵖ Posets-terminal .has⊤ P .centre .hom _ = lift tt Posets-terminal .has⊤ P .centre .pres-≤ _ = lift tt Posets-terminal .has⊤ P .paths f = trivial!