module Order.Instances.Product where

Products of posets🔗

Specialising the construction of pointwise orderings, we can show that the product of two partial orders is given by equipping the product of their underlying sets with an ordering given on components:

_×ᵖ_ :  {o o'  ℓ'}  Poset o   Poset o' ℓ'  Poset (o  o') (  ℓ')
P ×ᵖ Q = po module ×ᵖ where
  module P = Pr P
  module Q = Pr Q

  po : Poset _ _
  po .Poset.Ob = P.Ob × Q.Ob
  po .Poset._≤_ (x , x') (y , y') = x P.≤ y × x' Q.≤ y'
  po .Poset.≤-thin = hlevel 1
  po .Poset.≤-refl = P.≤-refl , Q.≤-refl
  po .Poset.≤-trans   (f≤g , f≤g') (g≤h , g≤h') =
    P.≤-trans f≤g g≤h , Q.≤-trans f≤g' g≤h'
  po .Poset.≤-antisym (f≤g , f≤g') (g≤f , g≤f') =
    P.≤-antisym f≤g g≤f ,ₚ Q.≤-antisym f≤g' g≤f'

{-# DISPLAY ×ᵖ.po a b = a ×ᵖ b #-}
infixr 20 _×ᵖ_

  fstᵖ : Monotone (P ×ᵖ Q) P
  fstᵖ .hom    = fst
  fstᵖ .pres-≤ = fst

  sndᵖ : Monotone (P ×ᵖ Q) Q
  sndᵖ .hom    = snd
  sndᵖ .pres-≤ = snd

  pairᵖ
    :  {o } {R : Poset o }
     Monotone R P
     Monotone R Q
     Monotone R (P ×ᵖ Q)
  pairᵖ f g .hom      x = f · x , g · x
  pairᵖ f g .pres-≤ x≤y = f .pres-≤ x≤y , g .pres-≤ x≤y

It’s straightforward to show this really is the product in

Posets-has-products :  {o }  has-products (Posets o )
Posets-has-products P Q .apex = P ×ᵖ Q
Posets-has-products P Q .π₁ = fstᵖ
Posets-has-products P Q .π₂ = sndᵖ
Posets-has-products P Q .has-is-product .⟨_,_⟩     = pairᵖ
Posets-has-products P Q .has-is-product .π₁∘⟨⟩ = trivial!
Posets-has-products P Q .has-is-product .π₂∘⟨⟩ = trivial!
Posets-has-products P Q .has-is-product .unique α β =
  ext λ x  α ·ₚ x ,ₚ β ·ₚ x

As a related observation, we can show that the unique partial order on the set with one element is the terminal object in

Posets-terminal :  {o }  Terminal (Posets o )
Posets-terminal .top = 𝟙ᵖ
Posets-terminal .has⊤ P .centre .hom    _ = lift tt
Posets-terminal .has⊤ P .centre .pres-≤ _ = lift tt
Posets-terminal .has⊤ P .paths f = trivial!