module Cat.Total.Instances.Reflective {o o' ℓ} {A : Precategory o ℓ} {C : Precategory o' ℓ} {L : Functor A C} {ι : Functor C A} (adj : L ⊣ ι) (reflective : is-reflective adj) (B-total : is-total A) where
open is-total private open module C = Cr C module A = Cr A module ι = FFr ι reflective module L = Fr L open module B-total = is-total B-total renaming (さ to さB)
Subcategories of total categories🔗
Any reflective subcategory of a total category is total.
In particular, the functor is equal to yoneda, as is fully faithful.
ι' : Functor C (PSh ℓ C) ι' = (precompose ι.op F∘ よ A) F∘ ι ni : ι' ≅ⁿ よ C ni = to-natural-iso record { eta = λ _ → NT (λ y p → ι.from p) λ _ _ f → ext λ g → ι.from-∘ ∙ (refl⟩∘⟨ ι.η _) ; inv = λ _ → yo _ (ι.F₁ id) ; eta∘inv = λ _ → ext λ _ f → ap ι.from (ι.eliml refl) ∙ ι.η f ; inv∘eta = λ _ → ext λ _ _ → ι.eliml refl ∙ ι.ε _ ; natural = λ _ _ _ → ext λ _ _ → ι.pouncer refl }
Furthermore, it has a has a left adjoint given by composition of our reflector and the left adjoint to yoneda for
L' : Functor (PSh ℓ C) C L' = L F∘ (さB F∘ precompose L.op) L'⊣ι' : L' ⊣ ι' L'⊣ι' = LF⊣GR (LF⊣GR (precomposite-adjunction (opposite-adjunction adj)) B-total.has-よ-adj) adj reflective-total→is-total : is-total C reflective-total→is-total .さ = L' reflective-total→is-total .has-よ-adj = adjoint-natural-isor ni L'⊣ι'