module Cat.Total.Instances.Reflective {o o' }
  {A : Precategory o } {C : Precategory o' }
  {L : Functor A C} {ι : Functor C A}
  (adj : L  ι) (reflective : is-reflective adj) (B-total : is-total A) where

Subcategories of total categories🔗

Any reflective subcategory of a total category is total.

In particular, the functor is equal to yoneda, as is fully faithful.

  ι' : Functor C (PSh  C)
  ι' = (precompose ι.op F∘  A) F∘ ι

  ni : ι' ≅ⁿ  C
  ni = to-natural-iso record
    { eta = λ _  NT  y p  ι.from p)
            λ _ _ f  ext λ g  ι.from-∘  (refl⟩∘⟨ ι.η _)
    ; inv = λ _  yo _ (ι.F₁ id)
    ; eta∘inv = λ _  ext λ _ f  ap ι.from (ι.eliml refl)  ι.η f
    ; inv∘eta = λ _  ext λ _ _  ι.eliml refl  ι.ε _
    ; natural = λ _ _ _  ext λ _ _  ι.pouncer refl }

Furthermore, it has a has a left adjoint given by composition of our reflector and the left adjoint to yoneda for

  L' : Functor (PSh  C) C
  L' = L F∘ (さB F∘ precompose L.op)

  L'⊣ι' : L'  ι'
  L'⊣ι' = LF⊣GR
    (LF⊣GR (precomposite-adjunction (opposite-adjunction adj)) B-total.has-よ-adj)
    adj

reflective-total→is-total : is-total C
reflective-total→is-total . = L'
reflective-total→is-total .has-よ-adj = adjoint-natural-isor ni L'⊣ι'